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Abstract. We perform a formal attribution study of upper-
and lower-stratospheric ozone changes using observations to-
gether with simulations from the Whole Atmosphere Com-
munity Climate Model. Historical model simulations were
used to estimate the zonal-mean response patterns (‘“finger-
prints”) to combined forcing by ozone-depleting substances
(ODSs) and well-mixed greenhouse gases (GHGs), as well as
to the individual forcing by each factor. Trends in the similar-
ity between the searched-for fingerprints and homogenized
observations of stratospheric ozone were compared to trends
in pattern similarity between the fingerprints and the inter-
nally and naturally generated variability inferred from long
control runs. This yields estimated signal-to-noise (S/N)
ratios for each of the three fingerprints (ODS, GHG, and
ODS + GHGQG). In both the upper stratosphere (defined in this
paper as 1 to 10 hPa) and lower stratosphere (40 to 100 hPa),
the spatial fingerprints of the ODS + GHG and ODS-only
patterns were consistently detectable not only during the era
of maximum ozone depletion but also throughout the obser-
vational record (1984-2016). We also develop a fingerprint
attribution method to account for forcings whose time evolu-
tions are markedly nonlinear over the observational record.
When the nonlinearity of the time evolution of the ODS and
ODS + GHG signals is accounted for, we find that the S/N
ratios obtained with the stratospheric ODS and ODS + GHG
fingerprints are enhanced relative to standard linear trend
analysis. Use of the nonlinear signal detection method also

reduces the detection time — the estimate of the date at which
ODS and GHG impacts on ozone can be formally identified.
Furthermore, by explicitly considering nonlinear signal evo-
lution, the complete observational record can be used in the
S/N analysis, without applying piecewise linear regression
and introducing arbitrary break points. The GHG-driven fin-
gerprint of ozone changes was not statistically identifiable in
either the upper- or lower-stratospheric SWOOSH data, irre-
spective of the signal detection method used. In the WACCM
simulations of future climate change, the GHG signal is sta-
tistically identifiable between 2020 and 2030. Our findings
demonstrate the importance of continued stratospheric ozone
monitoring to improve estimates of the contributions of ODS
and GHG forcing to global changes in stratospheric ozone.

1 Introduction

Climate change detection and attribution (D&A) studies seek
to identify and formally quantify an anthropogenic com-
ponent of change in observed climate data. Formal iden-
tification of an anthropogenic climate change “fingerprint”
has been successfully achieved with observations of atmo-
sphere and ocean temperatures, sea level, ocean acidity, var-
ious components of the water cycle and the cryosphere, and
certain climate extremes (Bindoff et al., 2013). To date, how-
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ever, few formal D&A methods have been applied in stud-
ies involving stratospheric ozone (see Gillett et al., 2011, for
one exception to this). There is evidence that stratospheric
ozone is transitioning from an era of widespread and read-
ily detectable depletion (linked to changes in anthropogenic
chlorofluorocarbons) to an era characterized by early signs of
recovery or healing (Solomon et al., 2016). Our motivation
for this work is to determine whether formal D&A methods
can provide a more confident and quantitative attribution of
ozone depletion and recovery signals.

Global changes in the physical climate system are driven
by both internal variability and external influences (Hegerl
etal., 2007; Karl et al., 2006). Internal variability is generated
through complex interactions of the coupled atmosphere—
ocean system. External influences include human-caused
changes in well-mixed greenhouse gases (GHGs), ozone-
depleting substances (ODSs), and other radiative forcing
agents, as well as natural fluctuations in solar irradiance and
volcanic aerosols. Past D&A studies have found that each
of these external influences has a unique fingerprint in the
detailed zonal-mean latitude—altitude pattern of temperature
change (Hansen et al., 2005; Karoly et al., 1994; Santer et al.,
1996a; Tett et al., 1996; Thorne et al., 2002; Vinnikov et al.,
1996). The use of such profiles of atmospheric temperature
change has proved particularly useful in separating human,
solar, and volcanic influences on climate, and in discriminat-
ing between externally forced signals and internal variabil-
ity. In this study, we use the latitude/altitude patterns of both
upper- and lower-stratospheric ozone change in response to
individual and combined anthropogenic forcings to under-
stand the relative detectability of ODS and GHG signals in
observations.

Stratospheric ozone depletion has been a significant in-
ternational concern since it was first recognized as a con-
sequence of anthropogenic emissions of ODSs (Molina and
Rowland, 1974). Following implementation of the Montreal
Protocol, there was a decline in emissions of ODSs and
a consequent decrease in halogen-containing compounds in
the stratosphere. In the 2014 World Meteorological Orga-
nization (WMO) Scientific Assessment of Ozone Depletion
(WMO, 2014), a major topic of interest was the statistical
significance of ozone trends over the last decade, and the ex-
tent to which “ozone recovery” is taking place. Assessing
the statistical significance of observed ozone trends does not
yield definitive information on the causes of trends. In ad-
dition to determining whether observed negative or positive
trends in ozone are unusually large or small relative to model-
based estimates of unforced trends in ozone, it is also impor-
tant to understand and quantify the contributions of different
climate forcings to the observed ozone changes and to assess
whether the agreement between an externally forced finger-
print and observations could have been obtained by natural
causes alone.

There is a clear scientific consensus that man-made
chlorofluorocarbons were the dominant driver of global
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stratospheric ozone decline from the 1970s to 2000s (e.g.,
Solomon, 1999, and references therein). It is also well es-
tablished that increasing GHGs contribute to a cooling of
the middle to upper stratosphere (Boville, 1986; Fels, 1980).
Colder temperatures result in a slowing down of gas-phase
catalytic reactions that destroy ozone in the upper strato-
sphere, which in the absence of any other changes, leads to
ozone increases. Thus, both decreasing ODS and increasing
GHG concentrations can act to increase upper-stratospheric
ozone. Understanding the extent to which GHG increases
may confound the attribution of ozone changes due to ODSs
is essential to the identification of ozone recovery at these
altitudes (see WMO, 2014).

Another potential confounding factor is change in the
Brewer—Dobson circulation (BDC), the meridional overturn-
ing circulation in the middle atmosphere that transports trace
gases from the tropics to the poles (Brewer, 1949; Dobson,
1956). Previous studies have found that a strengthening of
the BDC results in lower ozone concentrations in the trop-
ical lower stratosphere and an increase in concentrations in
the extratropics, and modeling studies have suggested that in-
creases in GHG concentrations lead to a strengthening of the
BDC (Eyring et al., 2010; Fleming et al., 2011; Garcia et al.,
2008; Gillett et al., 2011; Oman et al., 2010). In contrast,
a recent study by Polvani et al. (2017) found that trends in
ODSs, and not in GHG levels, have been the primary driver
of trends in tropical upwelling. This complicates the problem
of attributing ozone changes that are primarily BDC-related
since both GHG and ODS forcing may be implicated in driv-
ing changes in the BDC.

Another forcing that can affect the concentration of ozone
in the stratosphere is the solar cycle. The total solar irradi-
ance changes by about 0.1 % during the 11-year solar cycle;
however, UV radiation can change by about 4-8 % (Lean,
2000). Stratospheric ozone changes during the solar cycle
have been well documented (e.g., Merkel et al., 2011), with
the largest percentage change in ozone between solar maxi-
mum and minimum occurring between 30 and 45 km. Strato-
spheric ozone is also influenced by internal variability, pri-
marily via the quasi-biennial oscillation (QBO). The effect of
the QBO on upper-stratospheric ozone has been shown to be
small compared to its larger signal in interannual ozone vari-
ability in the lower and middle stratosphere (Hasebe, 1994;
Zawodny and McCormick, 1991). These natural and internal
changes must also be considered in attributing ozone changes
to specific causes.

Most D&A studies have been focused on the attribution of
changes in the climate system to anthropogenic GHG forc-
ing, which has been increasing linearly since the early 20th
century. In contrast, ODS forcing has had a unique non-
linear time evolution because of the implementation of the
Montreal Protocol. For analyses spanning both the depletion
and ozone recovery periods, purely linear trends are inade-
quate for capturing the more complex nonlinear evolution of
ozone change in certain parts of the stratosphere (as we will
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show later). Many ozone trend studies address this nonlin-
ear behavior by performing piecewise linear regressions with
a break point around 1997 (Bourassa et al., 2014; Chehade
et al., 2014; Jones et al., 2009; Kyrold et al., 2013; Laine
et al., 2014). The slopes of the piecewise trends are not con-
strained by physical and chemical considerations and are typ-
ically arbitrarily chosen to enhance the slopes for each of the
eras. Another approach is to quantify changes over the entire
record using regression to a nonlinear proxy, such as the halo-
gen loading in the stratosphere, described by the equivalent
effective stratospheric chlorine (EESC; see, e.g., Newchurch,
2003). Many studies have employed EESC-based regression
to quantify trends in ozone (e.g. Langematz et al., 2016; Sto-
larski et al., 2006a; Wohltmann et al., 2007). This approach
utilizes the entire observational record, with no arbitrary start
or end points. While EESC-based regression offers a num-
ber of advantages for the detection of nonlinear ODS-driven
ozone changes, it also has certain disadvantages (Kuttippu-
rath et al., 2015). In Sect. 4, we use EESC-based regression
to address the problem of nonlinear ODS evolution over the
full observational record. Our D&A approach also accounts
for the much smaller temporal changes in the GHG forcing
time series.

To the best of the authors’ knowledge, only one previous
study has considered the formal attribution of anthropogenic
emissions to observed stratospheric ozone changes: Gillett
et al. (2011). Their investigation examined zonal-mean solar
backscatter ultraviolet (SBUV) ozone measurements (Mclin-
den et al., 2009) over the 27-year period from 1979 to
2005 in the middle and upper stratosphere (50—1 hPa). Model
results were taken from simulations performed as part of
the Chemistry—Climate Model Validation Activity (CCM-
Val; Eyring et al., 2010). Gillett et al. analyzed multi-model
simulations performed with GHGs only, combined anthro-
pogenic factors only, and combined anthropogenic and natu-
ral external forcings. The ozone response to changes in ODSs
and the response to changes in natural external forcings
were estimated through subtraction of simulations. Gillett
et al. (2011) used a standard space—time optimal regression
methodology for signal detection and attribution (see, e.g.,
Allen and Tett, 1999). In this approach, the observations
are modeled as a linear sum of simulated responses (finger-
prints) to individual forcings, with each response scaled by
an estimated regression coefficient (expressing the strength
of the space—time response pattern in observations). A re-
gression coefficient significantly greater than zero indicates
a detectable response to the forcing, and a coefficient close
to unity signifies that simulated and observed responses are
similar in magnitude (attribution). The underlying premise
here is that the observations can be well represented by a lin-
ear combination of the input model signal response fields and
an additive noise term due to internal climate variability. It
is also assumed that the response patterns to different indi-
vidual forcings are statistically distinct (i.e., are separable)
and that the sum of the individual responses is equivalent to
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the response obtained when all forcings are varied simulta-
neously.

Gillett et al. (2011) were unable to separate the individual
ODS and GHG responses in the SBUV ozone data, but they
found a clear combined anthropogenic signal that was con-
sistent with observations. In their study, the authors hypoth-
esized that the difficulty in separating the individual ODS
and GHG responses was due to multiple factors: the lim-
ited ensemble size, and the degeneracy between the patterns
of stratospheric ozone response to ODS and GHG forcing.
Since the optimal regression methodology combines the spa-
tial and temporal responses into a single space—time vector,
it was not possible to determine whether the degeneracy be-
tween the ODS and GHG response patterns was primarily
due to spatial similarity or to similarity in temporal evolu-
tion.

We use a different approach here to understand and quan-
tify the relative contributions (and detectability) of the ozone
responses to ODS and GHG forcing. Rather than combin-
ing spatial pattern and time evolution information in a single
vector, we use pattern correlations to assess the time evolu-
tion of the spatial similarity between time-invariant finger-
prints and time sequences of (1) observed ozone patterns and
(2) model-based estimates of the natural variability in ozone.
Such methods rely on some form of spatial covariance statis-
tic (e.g., Santer et al., 1993, 1995) and may involve rotation
of the fingerprint in a low-noise direction in order to opti-
mize signal-to-noise ratios (Hasselmann, 1993; Hegerl et al.,
1996). The conventional strategy in this method is to search
for a long-term, positive trend in the pattern correspondence
statistic, which would indicate an increasing expression of
the searched-for signal in the observations. The underlying
assumption here is that the spatial pattern of the fingerprint
does not change markedly as a function of time, which is
a reasonable assumption for historical GHG forcing, but is
probably unreasonable for ODS forcing (see Solomon et al.,
2016).

Our study differs from that of Gillett et al. (2011) in a num-
ber of ways. In addition to using a different D&A method
and a longer ozone data set, we are also addressing different
statistical questions. First, we seek to determine whether the
observed changes in stratospheric ozone are unusual relative
to estimates of both internal climate variability and total nat-
ural variability (Santer et al., 2013b). Second, we consider
the time evolution of signal-to-noise (S/N) ratios, both for
the individual fingerprints of ODS-forced and GHG-forced
ozone changes, as well as for the ozone fingerprint arising
from combined ODS + GHG forcing. This allows us to de-
termine the detection time — the time at which S/N exceeds
and remains consistently above some stipulated significance
level. Third, we calculate S/N ratios separately for ozone
changes in the upper and lower stratosphere rather than for
a single region only (the 1 to SO0hPa region considered by
Gillett et al., 2011). The reasons for this decision are ex-
plained below. Fourth, because we do not combine spatial
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and temporal information, the spatial aspects of S/N behav-
ior are easier to evaluate (e.g., in terms of the pattern simi-
larity between the searched-for fingerprints and the observa-
tions).

There are several disadvantages of our selected approach.
Unlike Gillett et al. (2011), who performed a multi-model
analysis, we rely on a single model only and are unable to
evaluate the sensitivity of our results to possible errors in
the model-based estimates of internal variability and the re-
sponse to external forcing (North et al., 1998). Additionally,
since we do not explicitly incorporate time evolution infor-
mation in the searched-for fingerprints, pronounced differ-
ences in the time evolution of the ozone responses to ODS
and GHG forcing cannot be used in the separation of these
responses (at least not in the “linear trend” representation of
these signals.

As noted above, we perform separate D&A analyses for
ozone changes in the upper and lower stratosphere. Our
premise is that different dominant processes control the
changes in ozone concentrations in these two regions. In
the lower stratosphere, particularly in the tropics and extra-
tropics, ozone concentrations are affected by direct trans-
port, both through interannual variability and via changes
in the BDC (Shindell and Grewe, 2002). A further influ-
ence on lower-stratospheric ozone concentrations occurs by
means of heterogeneous chemistry on the surfaces of po-
lar stratospheric clouds and volcanic aerosols; the hetero-
geneous reactions are extremely sensitive to temperature
changes (Solomon, 1999). The ozone chemical lifetime is on
the order of weeks in the lower stratosphere in the Antarctic
and on the order of months at midlatitudes.

In the upper stratosphere, the processes controlling ozone
abundance are quite different; the photochemical lifetime of
ozone is on the order of hours, so that direct transport of
ozone is not important. The local concentrations of upper-
stratospheric ozone are determined by gas-phase chemistry,
which is well understood and well replicated in current
chemistry—climate models (Austin et al., 2002). Transport of
other GHGs (such as methane) can indirectly affect ozone
concentrations in the upper stratosphere (Solomon and Gar-
cia, 1984). The anticipated response from GHG forcing ra-
diatively cools the upper stratosphere uniformly with lati-
tude (Aquila et al., 2016), increasing ozone concentrations,
and potentially impacting atmospheric circulation through
the BDC. A strengthening of the BDC would result in lower-
stratospheric ozone decreases in the tropics and increases in
the extratropics.

Based on this understanding from atmospheric physics and
chemistry, we expect that different forcings should yield dis-
tinctly different latitudinal and vertical patterns of change.
Below, we examine in detail the use of these patterns for at-
tribution of the causes of ozone changes in the upper and
lower stratosphere.
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2 Model simulations and observed ozone data sets

The model used for all simulations analyzed in this study
is version 1 of the Community Earth System Model, with
version 4 of the Whole Atmosphere Community Climate
Model as the atmospheric component (CESM1(WACCM);
see Marsh et al., 2013). WACCM is a coupled chemistry—
climate model that extends from the Earth’s surface to the
lower thermosphere. WACCM'’s representation of hetero-
geneous chemistry has been shown to be in broad agree-
ment with observations of polar ozone and related chemical
species (Solomon et al., 2015). A wide range of experiments
were performed with WACCM:

1. Simulations that follow the experimental design of the
Chemistry—Climate Model Intercomparison (CCMI)
REFCI1 experiment (Morgenstern et al., 2017), with vol-
canic aerosols prescribed according to CCMI were car-
ried out (Arfeuille et al., 2013). These simulations in-
clude coupled chemistry and dynamics (Marsh et al.,
2013) with sea surface temperatures prescribed ac-
cording to observations for the period January 1955—
December 2014. Concentrations of ODSs and GHGs
vary over time, as specified in the REFC1 scenario.
A set of five ensemble members was available, each
with identical forcings but starting from slightly differ-
ing initial conditions. We refer to these simulations sub-
sequently as ALLI.

2. Free-running simulations that follow the same REFC1
scenario as in ALL1, with the same atmospheric cou-
pled chemistry and dynamics, but including an interac-
tive fully coupled ocean component were carried out.
These simulations begin in January 1960 and extend
through December 2099. One set of runs includes both
historical time-varying GHG and ODS concentrations
(referred to herein as ALL2), while another keeps GHG
concentrations fixed at their 1960 conditions but al-
lows the evolution of time-varying ODS concentrations
(referred to as FIXED GHG1960). A third set com-
plements the second with ODS concentrations fixed at
1960 conditions but with time-varying GHG concentra-
tions (FIXED ODS1960). Each of the aforementioned
sets of experiments contains three ensemble members
that were performed with slightly different initial con-
ditions. FIXED GHG1960 and FIXED ODS1960 fol-
low the convention of the CCMI REFC2 experiments
(Eyring et al., 2013). It should be noted that the time-
varying concentrations of ODSs in FIXED GHG1960
are radiatively active.

All sets of simulations in (1) and (2) include identical histor-
ical external forcings from solar insolation changes and pre-
scribed CCMI volcanic aerosol evolution. As in many other
general circulation models (see Xue et al., 2012), the QBO
is imposed by nudging the tropical stratospheric zonal winds
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to observed winds. From the sets of fully coupled simula-
tions, we were able to estimate responses to GHGs alone (re-
ferred to herein as GHGonly) and ODSs (referred to herein as
ODSonly) by independently differencing the individual en-
semble anomalies from the FIXED GHG1960 and ODS1960
simulations from the ALL2 ensemble mean. In addition,
we were able to isolate the combined response to volcanic
aerosols, the solar cycle, and the QBO by differencing the
sum of ensemble mean anomalies of the FIXED GHG1960
and ODS1960 simulations from the ensemble anomalies of
ALL2. We designate this as the natural historical signal (re-
ferred to herein as NAT-h). The underlying assumption for
our method of estimating the GHGonly, ODSonly and NAT-
h responses is that the stratospheric ozone responses to indi-
vidual forcings add linearly. Eyring et al. (2010) found this
assumption to hold in the stratosphere, but with some de-
partures from linearity in the tropical total column ozone. In
Fig. S1 in the Supplement we show that, in the absence of
the NAT-h response, the global-mean sum of the GHG and
ODS responses in the upper- and lower-stratospheric ozone
are close to the all forcing simulation.

There is reason to suspect that the NAT-h signal may
not thoroughly represent the ozone response to volcanic
eruptions in certain regions of the lower stratosphere. In
the low-halogen-loading stratospheric conditions of FIXED
ODS1960, increases in mid-stratospheric ozone following
a large volcanic eruption are expected as the loss of ozone at
these altitudes is dominated by odd nitrogen, due to enhance-
ment of N>Os hydrolysis (Tie and Brasseur, 1995). In the en-
hanced halogen loading conditions of FIXED GHG1960 and
ALL2, the mid-stratospheric increase is limited to higher al-
titudes, and ozone depletion will occur throughout the lower
stratosphere. The 40 to 100 hPa region in the lower strato-
sphere encompasses a part of the vertical altitude range
where the opposing effects of reactive nitrogen and halogen
chemistry occur. The validity of the assumption that these
opposing effects are additive is unclear. Despite the uncer-
tainty in the simulated ozone response to volcanic forcing,
we subsequently show that the NAT-h simulation success-
fully captures many features of the observed short- and long-
term variability in lower-stratospheric ozone.

3. Free-running fully coupled simulations of the last mil-
lennium (years 850 to 1850), in which only the esti-
mated external forcing from historical solar variability
is specified. This simulation (henceforth referred to as
NAT) provides insight into the range of fluctuations in
stratospheric ozone arising from the combined effects
of the solar cycle and internal variability (other than
the QBO; there is no nudging to observed stratospheric
winds in this simulation).

4. Free-running fully coupled preindustrial control run
length of 200 years. Unlike (3), there are no temporal
changes in solar forcing and all variability is intrinsic
to the climate system. This is the same experiment used
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by Marsh et al. (2013) to provide an estimate of inter-
nal climate variability alone and is referred to herein as
CTL.

We rely primarily on the Stratospheric Water and Ozone
Homogenized (SWOOSH) database (Davis et al., 2016)
for observational estimates of stratospheric ozone changes.
SWOOSH includes vertically resolved ozone from a sub-
set of the limb profiling satellite instruments operating from
1984 to present day. SWOOSH’s ozone product is a grid-
ded monthly-mean zonal-mean time series of mixing ratios
on pressure levels ranging from 1 to 316 hPa. A key aspect
of this merged product is that the source records are ho-
mogenized to account for inter-satellite biases and to reduce
the impact of non-climatic artifacts. In this study, we use
SWOOSH version 2.6 with a latitudinal resolution of 10°.
An advantage of the SWOOSH data set is that the vertical
range enables investigation of the full stratosphere from Jan-
uary 1984 to December 2016 (Tummon et al., 2015) found
that SWOOSH ozone concentrations from 1984 to 2011 were
within +10 % of other data sets throughout much of the
stratosphere, with the largest differences in the lower strato-
sphere. To test the sensitivity of our D&A results for the up-
per stratosphere to the choice of observational data set, we
also employ a second ozone data set that is independent from
SWOOSH: the previously mentioned SBUV Merged Cohe-
sive (SBUV_CDR) ozone data set. This is based on the ver-
sion 8.6 SBUV MOD data set and attempts to further reduce
the inter-satellite differences. The data set is produced at the
National Oceanic and Atmospheric Administration (NOAA,
ftp://ftp.cpc.ncep.noaa.gov/SBUV_CDR) and was available
for the years from 1979 to 2015 at the time of this study.
For the signal-to-noise analysis, it was necessary to trans-
form the ozone data from both observational grids and the
model grid of WACCM to a common grid. The common
horizontal grid chosen was SWOOSH’s 10° latitude zonal-
mean grid from 85°S to 85° N. Transformation to a rela-
tively coarse-resolution grid reduces the spatial dimensional-
ity of the input data sets, which is of benefit in the estimation
of empirical orthogonal functions (EOFs) used later in the
fingerprint analysis. Regridding of the vertical coordinates
was also performed: the WACCM output vertical levels were
transformed to match SWOOSH’s vertical levels (which con-
tain 31 pressure layers, spanning a pressure range from 1 to
316 hPa). Model ozone concentrations were masked at lat-
itude bands and layers at which no data were present in
SWOOSH. As a sensitivity test, we changed the definition
of the upper- and lower-stratospheric regions used for the
D&A analysis, using =1 SWOOSH levels on either side
of the original vertical ranges. When calculating the finger-
prints for the upper and lower stratosphere, we use anomalies
weighted by the cosine of latitude but do not employ vertical
pressure weighting. The latter processing choice is reason-
able since ozone concentrations do not vary by over an order
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of magnitude within each region and the anomalies are ex-
pressed as percent changes.

3 Global mean ozone changes

Figure la and b show, separately for the upper and lower
stratosphere, the time series of globally averaged annual-
mean ozone anomalies for the SWOOSH observations and
the five WACCM ensembles (ALL1, ALL2, GHGonly,
ODSonly, and NAT-h). Anomalies are expressed in terms of
percent changes relative to the first 10 years (1960-1969)
of the ALL1 simulation. In the upper stratosphere, there is
a steady decline in stratospheric ozone from the 1960s to late
1990s in both the ALL1 and ALL?2 historical simulations,
which is in agreement with the SWOOSH data. After the late
1990s, the decline slows down, and there is some indication
of a recovery of stratospheric ozone. The ODSonly anoma-
lies broadly track the temporal changes in ALL1 and ALL2
but reach larger depletion before beginning to increase, sup-
porting the large body of literature indicating that the large
decline was predominantly due to ODSs. The difference be-
tween the ALL1-ALL2 simulations and ODSonly can be ex-
plained by the steady increase in upper-stratospheric ozone in
GHGonly, consistent with upper-stratospheric cooling. This
supports the conclusion that upper-stratospheric ozone de-
pletion would have been greater during the depletion era in
the absence of increases in well-mixed GHGs (WMO, 2014).
The NAT-h anomalies show the presence of the 11-year so-
lar cycle in the upper stratosphere but no overall change in
ozone from 1960 to 2016.

In the lower stratosphere (Fig. 1b), ozone changes are
characterized by larger interannual variability. There is
a dominant 2- to 3-year cycle that is due to the historically
imposed QBO in all ensemble members of ALL1, ALL2,
and NAT-h. Although the ODSonly and GHGonly simula-
tions do not contain the natural and QBO responses present
in the other simulations, we see a large inter-ensemble spread
in the lower stratosphere when compared to the upper strato-
sphere. This is related to dynamical differences between en-
semble members as a result of the direct transport of ozone
in the lower stratosphere. The ODSonly evolution is simi-
lar to that in the upper stratosphere and broadly tracks the
ALL1 and ALL2 runs. For global GHGonly ozone anoma-
lies in the lower stratosphere, there is no significant trend. As
noted by Li et al., 2009, in the lower stratosphere, enhanced
ozone advection due to a strong BDC results in decreases in
the tropical ozone and increases in the extratropical ozone,
and in a global mean sense, the lower-stratospheric changes
cancel out.

It is noteworthy that the historical simulations differ
from SWOOSH after 2005, when the global-mean lower-
stratospheric ozone in SWOOSH does not flatten or begin
to turn around, in contrast to the recovery in ALL1 and
ALL2. To further examine this divergent behavior, we cal-
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culate lower-stratospheric ozone changes averaged over the
tropics (30° S to 30° N; see Fig. 1c) and over a global do-
main that excludes the tropics (Fig. 1d). It is clear from this
comparison that the post-2005 observation—-model difference
in global-mean lower-stratospheric ozone is largely due to
ozone differences in the tropics. This may be partly due to
the large observational uncertainty in ozone loss in this re-
gion. As noted in the WMO (2014) report, there is con-
siderable disagreement between observed data sets in terms
of ozone changes in the tropical lower stratosphere since
2000. The report states that changes since 2000 “computed
from different data sets in the tropical lowermost strato-
sphere remain an open question”. Because of this observa-
tional uncertainty in tropical ozone changes (and because of
the discrepancy between post-2000 tropical ozone changes in
SWOOSH and the ALL1 and ALL2 simulations), our subse-
quent D&A analysis for the lower stratosphere is performed
over two domains: a full global domain and a domain that
excludes 30° S to 30° N.

To summarize, upper-stratospheric ozone in SWOOSH
and the ALL1 and ALL2 simulations shows a large decline
of 5-8 %decade™! through the middle 1990s, followed by
an increase of 2.5-5 % decade ™! over the last 10 to 15 years.
This decline and recovery is in agreement with findings of the
WMO (2014) report. In the lower stratosphere, larger inter-
annual variability complicates the identification of long-term
ozone changes, and there are post-2005 differences between
the historical WACCM model simulations and SWOOSH
data that are relevant to the interpretation of the D&A results.
SBUV_CDR ozone anomalies in the upper stratosphere are
similar to those of SWOOSH (see Fig. S2).

3.1 Variability in WACCM natural and control
simulations

The CTL and NAT simulations provide estimates of the am-
plitude and timescales of natural ozone variability in the
WACCM model (see Fig. 2). In the CTL simulation (upper
panels), fluctuations in upper- and lower-stratospheric ozone
concentrations arise from internal variability alone. In the last
millennium NAT simulation, ozone fluctuations result from
both internal variability and solar forcing (lower panels). Pre-
vious work has shown that the solar cycle, El Nifio-Southern
Oscillation (ENSO), and the QBO are the main contributory
factors to natural variability in stratospheric ozone, affecting
ozone concentrations through chemistry and transport mech-
anisms (Kirgis et al., 2013; Nair et al., 2013). Below we show
the different effects of these contributory factors in the upper
and lower stratosphere.

In the upper stratosphere (Fig. 2a), the ozone variation
caused by the 11-year solar cycle is clearly evident in the
NAT simulation (see expanded time axis). The magnitude
of the internally generated ozone variability in the CTL is
smaller than ozone variability arising from the 11-year so-
lar cycle. The NAT-derived estimate of the change in upper-
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Figure 2. Same as Fig. 1 but for ozone anomalies from the preindustrial control simulation (top) and the preindustrial natural simulation
(bottom) for the upper (a) and lower stratosphere (b). The NAT results show (as an inset) an expanded 40-year segment of the anomaly data.

stratospheric ozone from solar maximum to solar minimum
is approximately 2—4 %. This is in agreement with results
from previous observational and model-based studies (Lee
and Smith, 2003; Newchurch et al., 2003; Randel and Wu,
2007). NAT also shows longer-timescale variability in upper-
stratospheric ozone concentrations in response to solar inso-
lation changes over multiple decades to centuries. The NAT
results highlight the large contribution of solar forcing to
ozone variability in the upper stratosphere and the smaller
role played by internally generated variability. The NAT-
h simulation (the yellow time series in Fig. la) indicates
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that there is limited influence of the QBO of 2-3 years on
ozone variability in the upper stratosphere. This is consis-
tent with a previous estimate that the QBO effect on upper-
stratospheric ozone is less than half that of solar variability
over the 11-year solar cycle (Egorova et al., 2004).

In the lower stratosphere (Fig. 2b), the interannual vari-
ability in ozone in the CTL is as large as the ozone variability
in NAT. In this region of the atmosphere, internal variability
in dynamics and transport is the dominant driver of natural
fluctuations in ozone — not solar irradiance changes. In fact,
the influence of the solar cycle on ozone is difficult to discern
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in the lower stratosphere (see expanded axis). This is consis-
tent with results from previous studies, which have shown
that the solar cycle effect on ozone maximizes around 35 km
and weakens in the lower stratosphere (Egorova et al., 2004;
Lee and Smith, 2003; Newchurch et al., 2003). The QBO-
driven anomalies in NAT-h (Fig. 1b) are of much larger mag-
nitude in the lower stratosphere; QBO-driven ozone anoma-
lies range from 4 to 8%, in accord with earlier results
(Hasebe, 1994; Randel et al., 1996).

Newchurch (2003) found that the large interannual vari-
ability in global-mean lower-stratospheric ozone cannot be
explained by the solar cycle and the QBO only: a signifi-
cant portion of the variance is related to monthly meteoro-
logical variability. Changes in interannual tropical upwelling
and lower-stratospheric ozone concentrations have been pre-
viously linked to ENSO (Bronnimann et al., 2013; Oman
etal., 2013). ENSO-induced variations in lower-stratospheric
ozone were found to exceed 5 %. ENSO-related variations
in tropical upwelling are partly responsible for modulating
the strength of planetary waves, leading to temperature and
water vapor variations in the tropical lower stratosphere that
can have impacts on the chemistry and transport of ozone
(Randel et al., 2009). ENSO signals in ozone are strongest
just above the tropical tropopause; at higher levels, they
are weaker than the QBO-related ozone signal (Randel and
Thompson, 2011).

Figure S3 shows the normalized power spectra of global
upper- and lower-stratospheric ozone anomalies for NAT,
NAT-h, and CTL. In the upper stratosphere, the 11-year solar
cycle is the strongest signal present in the NAT and NAT-h
simulations. In the lower stratosphere, the 2- to 3-year QBO
signal is strongest in NAT-h (which has an imposed QBO).

By comparing the stratospheric ozone results in Figs. 1
and 2, we can obtain a rough estimate of the relative sizes
of anthropogenically driven and purely natural changes. This
simple comparison suggests that the upper stratosphere is the
region where anthropogenic signal detection would be most
feasible.

3.2 Observed versus model variability

Model estimates of internal climate variability are a key com-
ponent of detection and attribution studies (Allen and Tett,
1999; Santer et al., 2013a). One common strategy is to esti-
mate and remove externally forced climate signals from the
observations and then compare the residual variability with
control run internal variability (Hegerl et al., 1996). There
are a number of uncertainties in such signal removal strate-
gies (Santer et al., 1996b). Here we use an approach similar
to Santer et al. (2011) and directly compare estimates of total
variability (arising from both internal processes and natural
external factors) in the observations, CTL, NAT, NAT-h, and
ALL1 runs. If the model systematically underestimates the
amplitude of stratospheric ozone variability on multi-decadal
timescales, the S/N ratios are likely to be inflated. Whether
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such a systematic error exists is difficult to determine be-
cause the global ozone observational records are relatively
short. Observations cannot, therefore, provide an unambigu-
ous constraint on model-based estimates of low-frequency
ozone changes, but they can provide useful insights into the
direction and size of model variability errors.

We investigate these issues with the modeled and observed
monthly-mean time series of global-mean upper- and lower-
stratospheric ozone anomalies. After detrending the modeled
and observed time series, we isolate long-term variability by
applying a band-pass filter with half-power cutoffs at 5 and
20 years to the residuals. We also used a high-pass filter with
a half-power point at 3 years to exclude all variability on
timescales longer than 5 years. All filtering operations were
performed after detrending the time series with a low-pass
filter with a half-power point of 30 years. The key point here
is that the modeled and observed ozone data are filtered in ex-
actly the same way. We use Sty (interannual variability) and
Spv (decadal variability) to denote the temporal SDs of the
high-pass- and band-pass-filtered ozone data, respectively.

The Stv and Spy results in Fig. 3 were calculated for
SWOOSH (396 months), ALL1 (for the 372-month period
from 1984 to 2014), NAT (12000 months), CTL (2400
months), and NAT-h (2112 months). NAT (NAT-h) provides
information on solar and internal variability in the absence
(presence) of variability from the QBO. The CTL variability
is solely generated by processes internal to the climate sys-
tem and has no contribution from natural external forcing.
Figure 3 shows that these simulations have systematic differ-
ences in the amplitude of variability. These differences are
manifest in both the sub-3-year timescale and the 5- to 20-
year timescales. In the lower stratosphere, the QBO is a dom-
inant component of the variability on timescales < 3 years:
only the ALL1 and NAT-h simulations (both of which have
QBO-induced ozone changes) are close to the observed value
of Spv. NAT-h also includes volcanic variability, which is an
important component for Sty in the lower stratosphere. CTL
and NAT (which both lack QBO and volcanic-driven ozone
changes) underestimate the observed interannual variability.
In the upper stratosphere, the observed and modeled Sty val-
ues all fall within 0.60-0.85 %.

The decadal variability is of key interest in D&A studies
since it constitutes the background noise against which an-
alysts attempt to identify gradually evolving anthropogenic
signals. In the lower stratosphere, the CTL value of Spy is
(as expected) lower than in the other three types of simula-
tion. There is no evidence that the simulations most directly
comparable to the observations (ALL1 and NAT-h) system-
atically underestimate the observed values of Spy obtained
from the SWOOSH data. Such an underestimate would be
concerning: it would spuriously inflate the S/N ratios ob-
tained in the D&A analysis (see below). In fact, both ALL1
and NAT-h yield values of Spy that are slightly larger than in
observations (see Santer et al., 2013a).
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Figure 3. Comparison of simulated and observed temporal variability in global ozone anomalies in the upper and lower stratosphere. Results
for the lower (upper) stratosphere are represented by square markers (circles). Variability on monthly to interannual timescales is plotted vs.
variability on timescales of 5-20 years. After removal of long-term trends from raw anomalies with a 30-year low-pass filter, a Butterworth
filter was used to perform band-pass and high-pass filtering. There is no overlap between the frequencies isolated by the high- and band-pass
filters. Results for NAT, CTL, and NAT-h are from 1000, 200, and 168 years, respectively, while ALL1 and SWOOSH are from January 1984
to December 2014 and December 2016, respectively. Temporal SDs for the band-pass- and high-pass-filtered data are given as the percent

differences from the base years of 1960-1969 in ALL1.

In the upper stratosphere, however, all four types of model
simulation have values of Spy that are smaller than the ob-
served result. As in the lower stratosphere, CTL (which does
not include solar forcing) has the lowest decadal variabil-
ity. ALL1, which has the most realistic time-varying external
forcing, is closest to SWOOSH, but still 11 % less than the
observed Spy value. One possible explanation for this dif-
ference in upper-stratospheric Spy between SWOOSH and
ALLI can be seen in Fig. la. In the mid- to late 1980s
SWOOSH is prominently higher than ALL1, which would
lead to a higher Spy value. There is also considerable obser-
vational uncertainty in Spy as different ozone data sets have
significantly different representations of the magnitude of the
solar cycle (Maycock et al., 2016). Chemistry—climate mod-
els are also known to have solar cycle variations in ozone that
are towards the lower bounds of observational estimates (see
chap. 8.5 of SPARC CCMVAL, 2010).

4 Latitude/altitude patterns of ozone change

Figure 1 shows that in the case of all simulations except
GHGonly, a simple least-squares linear fit is not an ade-
quate representation of ozone changes over the entire ob-
servational record (1984-2016). The nonlinear behavior of
ozone in Fig. la occurs because ODS emissions were cur-
tailed through implementation of the Montreal Protocol. As
mentioned in the introduction, we address this nonlinearity
by representing decadal changes in ozone using an EESC
proxy as in Randel and Wu (2007) and Newchurch (2003)
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(see also WMO, 2002; Fioletov and Shepherd, 2005; Sto-
larski et al., 2006). This proxy isolates ozone changes associ-
ated with changes in the amount of ozone-depleting chlorine
and bromine in the stratosphere. The EESC curve was taken
from the NASA Goddard Automailer, which uses the New-
man and Daniel (2007) EESC values updated according to
WMO (2010). The EESC calculations assume that the mean
age of stratospheric air is 5.5 years and age-of-air spectrum
width = 2.75 years. Sensitivity to the choice of these two pa-
rameters (e.g., varying the MAA from 3 to 6 years) affected
the magnitude but not the significance of the regression coef-
ficients. The EESC fit removes some of the nonlinearity that
is manifest in the ozone changes.

Figure 4a and b show the respective least-squares linear
trends in ozone and in EESC over the entire period of obser-
vational record (1984-2016). Results are for the ensemble-
mean model simulations and the SWOOSH ozone data. The
purpose of the comparison is to determine the expected trend
patterns from individual and combined forcings. We also
compare our fingerprints, derived in the next section, to the
patterns of long-term change.

We used the method outlined by Trenberth (1984) to de-
termine the statistical significance of the trends. Here and
subsequently, the stipulated significance level is 5 %. When
trends are directly calculated from the ozone data, GHGonly
is the only simulation yielding an appreciable region of
statistically significant results (Fig. 4a). This is the region
where GHGonly shows a 1-2 % decade™! increase in ozone
in the upper stratosphere (1-10hPa, Fig. 1a) and is the ex-
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Figure 4. Zonal-mean stratospheric ozone trends estimated using (a) linear regression and (b) EESC regression of annual-mean anomalies
from 1984 to 2016. For model simulations, trend estimates use the ensemble mean. Hatching indicates significance at the 5 % level or better
using a two-sided Student’s ¢ test. Figures in brackets indicate the number of ensemble members. All of the trends shown are for 1984-2016,

except for ALL1, which is from 1984 to 2014.

pected region of latitudinally coherent cooling. In GHGonly,
there is a nonsignificant decrease in ozone in the tropical
lower stratosphere and a nonsignificant increase in the extra-
tropics, as expected from an enhanced BDC. WMO (2011,
2014) reported negative ozone trends in the tropical lower
stratosphere between 1985 and 2005, and CCMVal simu-
lations indicate a long-term increase in tropical upwelling
and an increased BDC strength. We note, however, that the
WMO (2014) analysis of shorter satellite data sets between
2002 and 2012 does not show significant tropical lower-
stratospheric ozone trends, which may reflect the larger noise
associated with substantial decadal variability in the lower
stratosphere (see Fig. 3).

Very different results are obtained using the EESC regres-
sion (Fig. 4b). As expected, ODS forcing makes the largest
contribution to the ozone-change pattern in ALL1 and ALL2.
Large regions with significant effects of ODS changes on
ozone are evident in ALL1, ALL2, and ODSonly. Each of
these simulations shows the familiar pattern of midlatitude
lobes in the upper stratosphere. Another common aspect
of ALL1, ALL2, and ODSonly is a lower-stratospheric re-
sponse in the Southern Hemisphere (SH), with an Antarctic
ozone hole that is strong enough to persist in annual anoma-
lies. The SWOOSH ozone data also display the significant
two-lobe structure in the upper stratosphere and the lower-
stratospheric response in the SH polar region. The latter
feature, however, extends further equatorward in the ALLI,
ALL2, and ODSonly simulations than in the observations.
In the historical NAT-h simulation, there are no statistically
significant trends in either the ozone or EESC data over the
1984 to 2016 period.

The key conclusion of this section is that the statistical
significance of linear trends in stratospheric ozone behav-
ior depends critically on whether trends account for nonlin-
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earities in the ozone forcing. Previous studies with EESC-
type regressions have shown a familiar pattern of minima
in the upper stratosphere (~ 35-45km) and the polar lower
stratosphere (15-25km), similar to that obtained here in
the EESC-based ALL1, ALL2, and ODSonly simulations
(Randel and Wu, 2007; Wang et al., 2002). The upper-
stratospheric changes have a symmetric latitudinal struc-
ture, which is the fingerprint of gas-phase chlorine-induced
ozone loss. For both ozone and EESC, there are no signif-
icant trends in NAT-h over 1984-2016. We conclude from
our results that in the WACCM model, ozone changes over
1984 to 2016 are primarily forced by human-caused changes
in ODS and cannot be explained by natural factors alone.
Patterns similar to those found for the SWOOSH data (but
with slightly larger magnitudes) were obtained using the
SBUV_CDR observations (compare Figs. 4 and S4).

5 Fingerprint estimation

In most applications, the climate change fingerprint is a ge-
ographical pattern (Hegerl et al., 1996; Santer et al., 2003),
a vertical profile through the atmosphere or ocean (Barnett
et al., 2005; Santer et al., 1996b; Tett et al., 1996) or a vec-
tor with information on the combined spatial and tempo-
ral properties of the signal (Gillett, 2002; Stott et al., 2000;
Tett et al., 2002). Here, the fingerprint is a time-invariant
latitude—altitude pattern; ozone changes are zonally averaged
along latitude bands. The fingerprint provides an estimate of
the multi-decadal response to external forcing by combined
and individual human forcings. The implicit assumption in
this approach is that the spatial pattern of response does not
change markedly over time (Santer et al., 2013). We exam-
ine the adequacy of this assumption for the specific prob-
lem of interest here — the identification of a human-caused
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Figure 5. Leading signal and natural variability modes for upper-stratospheric ozone in WACCM. The signal modes are the leading EOFs of
the ensemble mean anomalies from GHGonly, ODSonly, and ALL1 calculated over 1960-2016 for GHGonly and ODSonly and over 1960—
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subtraction (see Sect. 2).

fingerprint pattern in the SWOOSH observations. The as-
sumption of timescale invariance of the fingerprint is tested
by defining the fingerprint over different time intervals. We
use a standard method (Hasselmann, 1979; Santer et al.,
1995) to determine whether model-predicted patterns of ex-
ternally forced stratospheric ozone changes can be identified
in SWOOSH. Fingerprinting is performed separately for the
upper and lower stratosphere.

Let x (i, x, p, t) represent the annual-mean percent ozone
anomalies at latitude band x, pressure p, and year ¢ for the
ith ensemble realization for each of the ALL1, ODSonly, and
GHGonly simulations:
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i =1,...N; (number of ensemble members, ranging from
3t05)

x =1,...N, (total number of latitude bands, 17)

p =1,...N, (total number of pressure layers, 10 and 6 for
the upper and lower stratosphere, respectively)

t=1,...N; (time in years)

Note that we are not using ALL?2 for fingerprint estimation
because the ODSonly and GHGonly responses were derived
from ALL2. As in previous work (Santer et al., 2003, 2013a),
we define the fingerprint F(x, p) by first averaging ozone
changes over individual ensemble members and then calcu-
lating the leading EOF of the covariance matrix of x (x, p, t).
Many fingerprint studies seek to rotate F'(x, p) in a direc-
tion that maximizes the signal strength relative to the control
run noise (Gillett et al., 2011; Tett et al., 2002). Optimization
of F(x, p) generally leads to enhanced detectability of the
signal. In this study, we were able to achieve high signal-to-
noise levels (see below) without any optimization of F(x, p),
and only non-optimized results are discussed. The searched-
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Figure 6. Same as Fig. 5 but for the lower stratosphere.

for fingerprints were computed using ozone anomalies from
1960 to 2016 for ODSonly and GHGonly and from 1955 to
2014 for ALLI. Sensitivity of our results to the choice of
time period for fingerprint calculation was tested by using
both a longer period of time (1950 to 2050 for ODSonly and
GHGonly) and a shorter time period (1984 to 2016). The fin-
gerprint patterns were found to be relatively insensitive to the
choice of time period for estimating F (x, p).

The fingerprint patterns for the upper and lower strato-
sphere are shown in Figs. 5 and 6 (respectively) for
ODSonly (panel a), GHGonly (panel b), and ALL1 (panel c).
Below each fingerprint is the associated principal compo-
nent (PC) time series showing the temporal changes in the
strength and sign of the pattern in the model simulation. For
both the upper and lower stratosphere, the EOF patterns are
similar to the latitude—altitude trend patterns presented previ-
ously, with GHGonly EOF1 closely matching the GHGonly
linear trends in ozone (Fig. 4a), and the leading ODSonly and
ALLT EOFs closely corresponding to trends computed from
the EESC proxy.

In the upper stratosphere, the leading ODSonly and GH-
Gonly EOFs tend to have a maximum amplitude at high
latitudes in both hemispheres (ODSonly) and in the trop-
ics (GHGonly). These differences are expected based on the
spatial structure and time evolution of long-term changes in
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ozone in ODSonly and GHGonly (see Fig. 4a and b). On
the global scale, however, we note that the EOF1 patterns in
both ODSonly and GHGonly have the same sign at virtually
all grid points in the upper stratosphere. The standardized PC
time series indicate that the ODSonly and ALL1 results are
qualitatively similar to the EESC curve, while PC 1 for GH-
Gonly is more linear. We rely on these PC time series in our
subsequent S/N analysis.

In the lower stratosphere, the familiar Antarctic ozone hole
is visible in the ODSonly and ALL1 fingerprints (Fig. 6a
and c). The GHGonly fingerprint (Fig. 6b) is qualitatively
similar to the long-term linear trend in ozone in the GHGonly
simulation (Fig. 4a), with ozone changes of opposite sign be-
tween 100 and 50 hPa in the tropical lower stratosphere.

A common feature of both the upper- and lower-
stratospheric results in Figs. 5 and 6 is the similarity be-
tween the ALL1 and ODSonly fingerprints. This similarity
indicates that in the model simulations, changes in ODS are
the primary driver of the changes in stratospheric ozone over
the past 50 years. A noticeable difference between the upper-
and lower-stratospheric results in Figs. 5 and 6 is that results
for the lower stratosphere are noisier. This increased noise
is manifest in two ways. First, relative to the upper strato-
sphere, EOF1 of ODSonly, GHGonly, and ALL1 consistently
explains less of the overall variance in lower-stratospheric
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ozone changes. Second, the amplitude of the variability in the
ODSonly, GHGonly, and ALL1 PC time series is systemati-
cally larger in the lower stratosphere. As noted above, these
differences between the upper and lower stratosphere reflect
the influence of different processes. In the upper stratosphere,
local concentrations of ozone are primarily driven by gas-
phase chemistry. In contrast, ozone concentrations in the
lower stratosphere receive a substantial influence from dy-
namical transport, which introduces larger interannual vari-
ability.

Before presenting the results of the S/N analysis, we first
examine the major modes of naturally forced and internal
variability estimated from the NAT-h, NAT, and CTL sim-
ulations. This is carried out separately for upper- and lower-
stratospheric ozone (see Figs. 5d—f and 6d—f, respectively).
For NAT and CTL we use the full simulations for calculating
EOFs and PCs, while for NAT-h we examine the ensemble
mean of the individual members prior to EOF and PC esti-
mation, and we rely on the years 1960 to 2016. Below each
NAT and CTL EOF pattern, we show a 50-year segment of
the associated PC for a 50-year slice, thus facilitating com-
parisons with the PC time series of ODSonly, GHGonly, and
ALLL.

In the upper stratosphere, the 11-year solar cycle is present
in NAT (EOF1) and NAT-h (EOF3). EOF1 from the CTL
is also manifest in NAT (EOF2) and appears to be associ-
ated with interannual changes in tropical upwelling. Tropical
upwelling influences temperature and therefore also affects
ozone via temperature-dependent reaction-rate chemistry. In
the lower stratosphere, solar-induced ozone changes are not
clearly visible in the three leading modes of variability com-
puted from NAT-h, NAT, and CTL. The dominant mode is
similar in these simulations and appears to be associated with
changes in upwelling and direct transport of ozone through
the lower branch of the BDC. EOF2 of NAT-h displays the 2-
to 3-year QBO influence on lower-stratospheric ozone (re-
call that NAT-h contains an imposed QBO to match observa-
tions).

In both the upper and lower stratosphere, the patterns of
the dominant modes of variability in NAT-h, NAT, and CTL
are noticeably different from the searched-for fingerprint pat-
terns. As noted above, the fingerprints estimated from the
ODSonly, GHGonly, and ALL1 simulations show upper-
stratospheric ozone changes that have the same sign at all
grid points. In contrast, the leading three modes of variabil-
ity estimated from the NAT-h, NAT, and CTL runs do not
have the same spatial coherence of ozone change and are
generally characterized by ozone changes of opposite sign
on smaller spatial scales. The sole exception is the coherent,
same-signed EOF pattern associated the 11-year solar cycle
(EOF3 in NAT-h and EOF1 in NAT; see Fig. 5d and e). To
quantify these similarities and differences, we calculated pat-
tern correlations between the searched-for fingerprints and
the leading noise modes (see Table 1). We rely on these cor-
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relations later for interpreting results from the S/N analysis
(see below).

6 Signal-to-noise ratio estimates

We now seek to identify the model-predicted fingerprints
of anthropogenically forced stratospheric ozone changes
in observations. We project the time-varying annual-mean
latitude-height ozone anomalies from the SWOOSH data,
denoted here by O (x, p,t), onto F(x, p) the time-invariant
fingerprint from the ODSonly, GHGonly, or ALL1 simula-
tion (see Figs. Sa—c and 6a—c). This projection step yields
the signal time series c{F, O}(¢):

N

Ny P
co{F,0}0) =D D F(x,p)O(x,p,1). ¢!

x=1p=1

This projection is equivalent to a spatially uncentered co-
variance between the patterns F(x, p) and O(x, p,t) at
time ¢t. The signal time series c{F, O}(t) provides infor-
mation on both the amplitude and sign of the fingerprint
in observational data. We can then analyze how c{F, O}(¢)
changes with time — i.e., whether the searched-for fingerprint
pattern becomes increasingly similar to observed latitude—
altitude patterns of ozone change.

Several approaches can be used to assess the significance
of the changes in c{F, O}(¢): direct comparison of actual
c{F, O}(t) values with a null distribution (e.g., Wigley et al.,
1998) or comparison of the trends in c{F, O}(¢) with a null
distribution of trends (e.g., Santer et al., 2003). We use the
latter approach here. To assess trend significance, we require
acase in which O (x, p, t) is replaced by a record in which we
know a priori that any spatial correspondence with the finger-
print occurs by chance alone. Here, we use the noise data set
N(x, p,t), which is constructed by concatenating together
the NAT, NAT-h, and CTL simulations. The associated noise
time series c{F, N}(¢) is the spatially uncentered covariance
of F(x,p)and N(x, p,t):

Ny NP

o(F, N} =D > F(x, p)N(x, p.1). 2)

x=1p=1

Estimates of signal to noise (S/N) are conventionally eval-
uated (e.g., see Santer et al., 2003) by fitting linear least-
squares trends of increasing length L to ¢{F, O}(¢) and then
comparing these trends with the SD of the distribution of
L-length trends found in the noise time series c{F, N}(¢).
Signal detection is obtained when the trend in c{F, O}(¢)
exceeds and remains above a stipulated significance level.
The test is one-tailed and assumes a Gaussian distribution of
trends in c{F, N}(¢). Here we use the 1 % significance level,
which corresponds to a §/N ratio close to 2.33. §/N ratios
that consistently exceed this level are highly unlikely to be
due to the combined effects of natural internal variability and
natural external forcing.
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Table 1. Correlation coefficients between the leading signal and noise patterns for the upper stratosphere (bold) and lower stratosphere.
Signal patterns are the leading EOFs for ALL1, GHGonly, and ODSonly. The noise patterns are the leading EOFs for NAT-h, NAT, and CTL

(see Figs. 5 and 6).

ALL1 GHGonly ODSonly NAT-h NAT CTL
ALL1 - —0.66 0.99 -0.18 -042 -032
GHGonly 0.19 - -0.72 018 -0.10 0.19
ODSonly 0.72 —0.18 - -013 -035 -0.38
NAT-h 0.19 —0.35 —0.13 - 0.19 0.46
NAT —0.25 0.32 0.05 —0.93 - =016
CTL 0.09 0.24 —0.03 0.90 0.97 -

Since the sign of the fingerprint EOFs in Figs. 5 and 6 is
arbitrary (and since the EOF patterns are very similar to the
patterns of ozone trends in Fig. 4), we stipulate that the sign
of the leading EOF in ODSonly, GHGonly, or ALL1 should
match the sign of the corresponding simulation’s ozone trend
pattern. With this stipulation, negative S/N ratios indicate
that the sign of the overall change in ozone in the anthro-
pogenically forced simulation is inconsistent with the ob-
served ozone change.

We estimate S/N ratios by fitting least-squares trends
to L-length segments of c{F, O}(¢t) and then comparing
these signal trends with s(L), the SD of the sampling dis-
tribution of m maximally overlapping L-length trends in
c{F,N}(t) (i.e., for overlap by all but 1 year). As noted
earlier, ¢c{F, N}(¢) is the concatenation of NAT, NAT-h, and
CTL, and due to the discontinuities between the simulations,
we discard trends that span two different noise simulations.
As L increases, m decreases. We use maximally overlap-
ping trends to guard against excluding the largest changes
in ozone from our analysis. We use a minimum trend length
of L =10 years; thus, the first S/N ratio (and the earliest
possible detection time) is for 10-year trends starting in 1984
and ending in 1993.

One innovative feature of this work is that we derive es-
timates of S/N behavior using two types of approach. The
regression is of the standard form:

y=XB+e, 3

where y can be either ¢{F, O}(¢) or ¢{F, N}(t), X contains
the regressors, B contains the reported trend or regression
coefficients, and ¢ is an error term.

The first method we employ for S/N estimation is of
the conventional form used in such studies (see, e.g., Santer
et al., 2003), where X is the time coordinate in years:

_ Bo
,ﬂ—(ﬁl). 4)

to is the starting year (1984), By is the intercept, and (L) is
the reported trend coefficient of interest, with units of percent
change in ozone per year.

1o
X= . .
1 v+ L
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The second method relies on linear regression between
c{F,0}() or ¢{F,N}(t) and a selected PC; time series.
There are a total of six PC; time series, one for each layer
(upper and lower stratosphere) and for each of the ODSonly,
GHGonly, and ALL1 fingerprints. In this second method,
the regressor X contains the PC; time series for the selected
trend years:

1 PCi(n)

_ _( Bo
x= ’ﬂ_(ﬁpcl)’ ©)

where Bpc, (L) is the reported trend coefficient and has units
in percent change per unit SD of PC;. For example, if both
c{F, O}(t) and PC; show similar nonlinear behavior over
a common analysis period (such as 1984 to 2016), the re-
gression coefficient Bpc, (L) will be unusually large rela-
tive to values of the regression coefficient estimated with
c{F,N}(t). In cases in which PC; exhibits change that is
nearly linear with time, then the change in Bj(L) (the lin-
ear trend representation of ozone change) and Bpc, (L) with
increasing L will be similar.

The advantage of the second method is that it accommo-
dates forcings whose time evolution is markedly nonlinear
over the observational record, whereas the first method im-
plicitly assumes that the forcing evolution is quasi-linear over
the period of interest. Like the first method, however, the
second method still assumes that the spatial structure of the
searched-for fingerprint is essentially unchanged with time
(an assumption that is justifiable; see above). In summary,
our second method of estimating S/N behavior uses infor-
mation on both the model-derived fingerprint and its time
evolution to search for the fingerprint in SWOOSH data.
Since the ODSonly and GHGonly fingerprints have differ-
ent time evolution properties (particularly in the upper strato-
sphere; compare Fig. 5a and b), explicit consideration of this
time evolution information can be useful in separating the
ODS- and GHG-induced ozone change signals in observa-
tions. In the following, we refer to our first S/N method as
the linear or B trends method, and we refer to the second
method as either the PC; or nonlinear signal method.

1 PCi(tp+ L)
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Figure 7. Results from the S/N analysis of simulated and observed changes in zonal-mean upper- and lower-stratospheric ozone. Signal time
series provide information on the similarity between the time-invariant ODSonly, GHGonly, or ALL1 fingerprint pattern and the time-varying
observed patterns of stratospheric ozone change. Signal detection relies on both simple linear regression (a—c; method 1) and regression
between c{F, O}(t) and the leading PC of the ODSonly, GHGonly, or ALL1 simulation (d-f; method 2). Results are a function of the
analysis period L (in years). The L-year trends in the method 1 and method 2 signal time series are plotted in the top row. The year on the
abscissa is the end year of the L-length trend beginning in 1984. Noise time series indicate the level of similarity between the searched-for
ODSonly, GHGonly, and ALL1 fingerprints and the concatenated CTL, NAT-h, and NAT estimates of natural variability in ozone. The middle

panels show the SD of the distribution of maximally overlapping L-year trends in ¢{F, N}(¢). The S/N ratio is shown in the bottom panels.

The dashed horizontal line indicates the stipulated significance level of 1 % for signal detection.

The S/N results are shown in Figs. 7 and 8 for the up-
per and lower stratosphere, respectively. The left panels show
S/N estimates from the f; trends, and the right panels show
the S/N estimates based on Bpc, trends. Results are for
the three fingerprints: ALL1, GHGonly, and ODSonly. Since
the Bpc, trends are regressions to the associated PCy of the
fingerprints, the ALL1 simulation (which ends in Decem-
ber 2014) yields S/N ratios that end in 2014, while the
ODSonly and GHGonly simulations span the full observa-
tional record, allowing S/N ratios to be calculated through
to 2016 (inclusive).

First we consider S/ N ratios for the upper stratosphere and
for results based on the first method of estimating trends (see
left panels of Fig. 7). The use of § yields virtually identical
signal trends, noise trends, and S/ N ratios for the ALL1 and
ODSonly fingerprints. Recall that the signal trends are calcu-
lated from the time series of the projections of the SWOOSH
data onto the fingerprints. The ALL1 and ODSonly signal
trends are large and positive in the first 10-20 years. These
large positive trends arise during the depletion era, when
upper-stratospheric ozone decreased steadily until the late
1990s. The positive sign of the signal trends that end in the
depletion era reflects the consistency in sign between the ob-
served ozone loss and the loss of ozone captured in the ALL1
and ODSonly simulations (see Fig. 5a and c). As the trend
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length L extends into the 21st century, the signal trends for
ALL1 and ODSonly decline towards zero. This is a result of
the stabilization of ozone loss and the emerging recovery of
stratospheric ozone. Such nonlinear behavior is not well de-
scribed by fitting a straight line through the entire c{F, O}(¢)
time series.

The time evolution of the B signal trends obtained with
the GHGonly fingerprint mirrors the results for ODSonly and
ALLL, but is of opposite sign (Fig. 7a). The negative sign of
the GHG signal trend arises because of the sign mismatch be-
tween upper-stratospheric ozone changes in SWOOSH and
the GHGonly simulation (see Fig. 1a). The SDs of the noise
trends (Fig. 7b) are very similar for the three fingerprints,
which is expected given the similarity between the ODSonly,
GHGonly, and ALL1 fingerprint patterns (see Table 1). The
decrease in the amplitude of the noise trends with increas-
ing trend-fitting period is typical behavior for many different
climate variables (see, e.g., Santer et al., 2013a, b).

Because of early 21st century ozone recovery, and the im-
pact of recovery on B signal trends, S/N ratios obtained
with the ODSonly and ALL1 fingerprints decline from the
late 1990s through 2016 (2014 in the case of ALLI; see
Fig. 7c). For both of these fingerprints, however, S/N ra-
tios remain above the stipulated 1 % significance threshold,
even for signal trends sampling the recovery era. This re-
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Table 2. Signal-to-noise ratios for the longest L-year analysis peri-
ods shown in Figs. 7 and 8. Results are for the linear () and nonlin-
ear signal methods (Bpc, ). For ODSonly and GHGonly, the longest
analysis period is 33 years (1984-2016). For ALL1, the longest
analysis period is 31 years (1984-2014). The figures in brackets
for the lower stratosphere indicate the signal-to-noise ratios when
the tropics are excluded.

Upper stratosphere ‘ Lower stratosphere
F(x,p) Bi Brec, | B Brc,
ALL1 4.34 9.66 6.72 (4.68) 6.93 (5.82)
ODSonly 3.27 7.68 5.35(4.43) 3.21(5.42)
GHGonly —3.49 —3.81 | 0.18 (—4.13) 0.32(—4.89)

sult suggests that even with an emerging “healing” signal in
the early 21st century, the overall loss in upper-stratospheric
ozone over the entire 1984 to 2014 analysis period is still
significantly larger than can be explained by WACCM-based
estimates of internally generated and solar-forced changes in
ozone. The close agreement between the ALL1 and ODSonly
S/N ratios indicates that human-caused changes in strato-
spheric ozone are the dominant contributor to forced ozone
changes in ALL1. In the GHGonly case, the S/N ratio be-
comes less negative as the trend length L increases. This re-
flects the observed increase in upper-stratospheric ozone in
the early 2000s, which projects positively onto the GHGonly
fingerprint (Fig. 5b). In summary, use of a standard finger-
print identification method allows us to positively detect (in
SWOOSH ozone data) the upper-stratospheric ozone finger-
prints in response to ODS forcing alone and in response to
combined ODS and GHG forcing. For all three fingerprints,
however, the f) signal trends display pronounced nonlinear
behavior because of the observed depletion followed by re-
covery. This nonlinear behavior is not accounted for in the
first (B based) signal detection method and decreases S/N
ratios as the analysis period lengthens.

To address this problem, we also calculated S/N ratios
using the above-described method 2, which relies on regress-
ing the c{F, O}(¢) time series onto each of the PC time se-
ries for the individual ODSonly, GHGonly, and ALL1 fin-
gerprints (see Fig. 5a—c). These “signal” regression coeffi-
cients, Bpc,, are shown as a function of L, the analysis pe-
riod length (Fig. 7d—f). It is instructive to compare the S/N
results in the left and right panels of Fig. 7, which highlights
differences between the linear and nonlinear signal detec-
tion approaches (i.e., between methods 1 and 2, respectively).
As L increases and the analysis periods sample both ozone
depletion and recovery, use of method 2 markedly increases
S/ N ratios relative to a purely linear representation of signal
trends. This enhancement of S/N occurs because method 2
incorporates information about the nonlinear behavior of the
upper-stratospheric ozone signal (behavior that is common to
the real world and the WACCM ODSonly and ALL1 simu-
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lations). Further information on the enhancement of S/N is
provided in Table 2.

There are several other noteworthy features of the
method 2 results in Fig. 7. First, the method 1 and method 2
S/N ratios for the GHGonly fingerprint show qualitatively
and quantitatively similar behavior. This similarity is due to
the fact that PC for the GHGonly fingerprint (Fig. 5b) is well
described by a linear trend; thus, the regression coefficients
between the linear PC and the nonlinear ¢{F, O}(¢) time se-
ries change markedly as L increases. Second, Sy, the SD of
the sampling distribution of noise trends, shows some differ-
ences in the method 1 and method 2 cases (Fig. 7b and e).
In method 1, S; decreases in amplitude with increasing L;
this holds for all three fingerprints. In contrast, the method 2
results show that for the ODSonly and ALLI fingerprints,
St has a local minimum for L = 18 years, and then increases
slightly for longer analysis periods. This local minimum in
S, is absent in the GHGonly results for method 2.

The differences between the method 1 and method 2 S,
results are probably related to multiple factors. These in-
clude (1) the strong influence of solar forcing on upper-
stratospheric ozone, (2) the periodicity in solar forcing in
the NAT simulation, (3) the fact that the dominant mode of
ozone variability in NAT is more similar to the ODSonly and
ALL1 fingerprint patterns than to the GHGonly fingerprint
(see pattern correlation results in upper triangle of Table 1),
and (4) the quasi-linearity of the PC; time series for the GH-
Gonly fingerprint and the nonlinearity of the PC; time series
for the ODSonly and ALLI fingerprints (see Fig. 5).!

For the upper stratosphere, we also explored whether our
S/N results were robust to the choice of ozone data set. This
involved replicating the SWOOSH-based S/N analysis with
the SBUV_CDR upper-stratospheric ozone data set, which
was available from 1979 to 2015. The SBUV S§/N analy-
sis was performed with the same model fingerprints shown
in Fig. 5a—c. Relative to the SWOOSH results, S/N ratios
were generally slightly larger when calculated with SBUV
data. As in the SWOOSH case, the SBUV results show that
use of method 2 yields a noticeable enhancement of S/N ra-
tios for the ODSonly and ALLI fingerprints (see Fig. S95).
In summary, the method 2 results for the upper stratosphere
show (relative to method 1) higher S/N ratios and more
confident identification of the ODSonly and ALLI1 finger-
prints in observations. Even with method 2, however, the

IRecall that for method 2, the noise regression coefficients
are calculated between maximally overlapping L-year segments of
c{F,N}(t) (the projection of the combined NAT and CTL data
onto the ODSonly, GHGonly, or ALL1 fingerprint) and an L-year
segment of the PC; time series for the ODSonly, GHGonly, or
ALLLI fingerprint. As the L-year analysis window is being advanced
through c{F, N}(¢), there will be (for certain values of L) times of
random agreement in the phasing of solar variability and the non-
linear behavior in the ODSonly and ALL1 PC; time series. Such
agreement would be expected to yield more complex behavior in
S, as a function of L.
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Figure 8. Same as Fig. 7 but for the lower stratosphere. The solid line shows results for the global lower stratosphere, while the dashed lines

exclude the tropics (30° S to 30° N).

GHGonly ozone signal cannot be detected by the final year
of the SWOOSH record (2016).

Next, we examine the lower stratosphere. Because of the
above-described differences in the post-2005 behavior of
tropical lower-stratospheric ozone in ALL1 and SWOOSH
(see Fig. 1c), we partition our lower-stratospheric S/N anal-
ysis into two cases: for a global domain and for a domain
poleward of 30° S to 30° N (i.e., excluding the tropics). Fig-
ure 8a—f show the signal trends, noise trends, and S/N ra-
tios for the lower stratosphere, estimated with methods 1
and 2. Consider the B signal trends first. As in the case of
the upper stratosphere, the behavior of f; as a function of
the trend length L is similar for c¢{F, O}(¢) time series ob-
tained with the ODSonly and ALL1 fingerprints. These sim-
ilarities are greater when the tropics are excluded from the
analysis. Inclusion or exclusion of the tropics also impacts
the B signal trends obtained with the GHGonly fingerprint:
in the global analysis, trends ending after 2000 are slightly
positive, while in the “tropics excluded” case, trends ending
after 2000 are slightly negative. The S/N ratios for the f;
trends (Fig. 8c) show that in the lower stratosphere, both
the ALL1 and ODSonly fingerprint patterns are detectable
in the SWOOSH observations. This holds for the global and
tropics excluded domains. The GHGonly fingerprint is not
statistically identifiable in either domain by the end of the
SWOOSH record.

Recall that in the upper stratosphere, the use of method 2
yielded S/N ratios for the ODSonly and ALL1 fingerprints
that were markedly larger than for method 1. A large en-
hancement of S/N ratios is not evident in the lower strato-
sphere (Fig. 8c and f). A small S/N enhancement occurs for
ODSonly and ALL1 fingerprints, but only when the tropics
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are excluded. The smaller differences between the method 1
and method 2 S/ N results (relative to the upper stratosphere)
are likely due to the larger variability in ozone in the lower
stratosphere (see Fig. 3). As in the case of method 1, use
of method 2 leads to consistent detection of the ODSonly
and ALLI fingerprints in observed lower-stratospheric ozone
data, but does not yield positive identification of the GH-
Gonly fingerprint.

In summary, we find that for both the upper and lower
stratosphere, the observed decline and emerging recovery
of stratospheric ozone is strongly influenced by secular
changes in anthropogenic chlorofluorocarbons. These secu-
lar changes reflect scientific recognition of the serious con-
sequences of ozone depletion and the eventual formula-
tion and implementation of the Montreal Protocol. We were
able to identify the model-predicted latitude—altitude pat-
terns of ozone depletion in observations of upper- and lower-
stratospheric ozone loss. We were not able to identify the
model-predicted ozone changes arising from human-caused
increases in well-mixed GHGs. Our results show that in
the upper stratosphere, ozone depletion and recovery intro-
duce pronounced nonlinearity in both modeled and observed
ozone changes. Accounting for this common nonlinear be-
havior in our signal detection method (in our method 2) sub-
stantially amplifies S/N ratios. This amplification is largest
in the upper stratosphere, where the nonlinear behavior is
clearest and noise levels are lowest (see Table 2).

7 Discussion

In this study, we used the SWOOSH stratospheric ozone
data set and simulations performed with the Whole Atmo-

Atmos. Chem. Phys., 18, 143-166, 2018



160 J. Bandoro et al.: Detectability of the impacts of ozone depleting substances and greenhouse gases

sphere Community Climate Model to evaluate the relative
detectability of ozone changes arising from forcing by ODSs,
GHGs, and combined changes in ODSs and GHGs. Our fo-
cus was on the period covered by the SWOOSH data (1984
to 2016). Our detection study relied on zonal-mean latitude-
height profiles (fingerprints) of ozone change. The lower and
upper stratosphere were considered separately in this inves-
tigation. This separation was made because the forcing by
ODSs and GHGs has different ozone-change signatures in
the lower and upper stratosphere, and because the amplitude
and patterns of ozone variability differ in these two atmo-
spheric regions.

The credibility of our findings rests on the reliability of
the WACCM-based estimates of natural climate variabil-
ity. Before conducting our signal detection study, we first
investigated the skill of the WACCM model in capturing
the observed variability in global-mean lower- and upper-
stratospheric ozone. This comparison was performed using
high-pass- and band-pass-filtered data, which isolated vari-
ability on short (less than 3 years) and long (5-20 years)
timescales, respectively. We found that in the lower strato-
sphere, the WACCM simulation incorporating variability as-
sociated with the QBO yielded short-term variability that
was closest to the SWOOSH-based estimate. Reliable sim-
ulation of the longer-timescale variability in ozone required
the inclusion of solar forcing, particularly in the upper strato-
sphere (where solar-forced ozone changes are largest). In the
simulation of historical climate change with combined ODS
and GHG forcing (which is the simulation most relevant for
comparison with observations), the amplitude of the longer-
timescale variability is larger than in SWOOSH in the lower
stratosphere and slightly smaller than in SWOOSH in the up-
per stratosphere.

In global-mean terms, the upper- and lower-stratospheric
ozone changes from the ODS 4+ GHG simulation best match
the observed 20th century ozone depletion and early 21st
century ozone recovery (see Fig. 1). In the full pat-
tern analysis of zonal-mean latitude—altitude changes in
ozone, all three anthropogenic fingerprints (ODS, GHG, and
ODS + GHG) have coherent, large-scale structure. The three
fingerprints are spatially dissimilar to the smaller-scale (and
opposite-signed) structure of the dominant modes of internal
and solar variability. The ODS and GHG fingerprints have
similar large-scale structure in the upper stratosphere, but are
of opposite sign, and they have distinctly different time evo-
lution over the observational record (see Fig. Sa—c).

We applied two different fingerprint identification meth-
ods. The first (our method 1) has been routinely used in
a number of detection and attribution studies. It assumes that
the time evolution of the fingerprint pattern is quasi-linear
over the length of the observational record. In the case of
stratospheric ozone, however, the time evolution of the ODS
and ODS + GHG fingerprints (which we refer to as signal
time series) is markedly nonlinear because of 20th century
stratospheric ozone depletion and early 21st century ozone
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recovery. This means that method 1 — which relies on linear
fits to both signal and noise time series> — is sub-optimal for
assessing the S/ N properties of stratospheric ozone changes.

In contrast, our method 2 explicitly accounts for the non-
linear time evolution of the ODS and ODS 4 GHG finger-
prints. In the upper stratosphere, where this nonlinear be-
havior is clearest, method 2 yields S/N ratios for ODS and
ODS + GHG fingerprints that are markedly larger than those
obtained with method 1. In both the upper and lower strato-
sphere, only the ODS + GHG and ODSonly fingerprint pat-
terns were detectable before the current final year (2016) of
the SWOOSH ozone data set. The GHG-driven fingerprint of
ozone changes was not statistically identifiable in either the
upper- or lower-stratospheric SWOOSH data, irrespective of
whether we employed method 1 or method 2.

Our results illustrate the importance of explicitly consid-
ering the forced, nonlinear temporal changes in the signal of
interest. Here, both the 20th century ozone depletion and the
emerging early 21st century ozone recovery are driven by
well-understood temporal changes in ODS forcing. The time
structure of the ODS ozone signal is very different from the
much more linear increase in ozone caused by increases in
GHG levels (see Fig. Sa—c). Our findings suggest that these
differences in time evolution are key to confident separation
of the ODS and GHG ozone signals. While one previous de-
tection and attribution study involving stratospheric ozone
considered time information, it was not able to clearly sep-
arate ODS and GHG signals (Gillett et al., 2011). The key
advantage here is that we are dealing with an observational
record that extends to 2016 compared to 2005 in Gillett et al.,
and thus are better able to capture the emerging recovery of
stratospheric ozone and the nonlinear behavior of the ODS-
driven ozone signal. Figure 9 shows a schematic comparing
method 1 and our method 2, which can be applied to attribu-
tion studies in which there is evidence that the climate forc-
ing has a temporal component that changes nonlinearly over
historical records. Although our study was confined to us-
ing spatial fingerprints in the latitude—altitude domain, the
method is equally suitable for other domains, such as for
longitude-latitude fingerprints. Not shown in Fig. 9 is the
calculation of the SD of the sampling distribution for the
noise regression coefficients, s(L). Noise calculations use the
same approach applied for the signal: projection of the com-
bined noise simulation data onto the fingerprint to retrieve
c{F, N}(t), followed by the calculation of regression coef-
ficients. The regressions rely on L-year segments of either
c{F, N}(t) and time (in the case of method 1) or c¢{F, N}(t)
and the leading PC time series of the model ALL1, ODSonly,
or GHGonly simulation (in the case of method 2).

2 As described above, noise time series are obtained by project-
ing model estimates of naturally caused changes in ozone (both in-
ternally generated and arising from solar forcing) onto the ODS,
GHG, and ODS + GHG fingerprints.
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Figure 9. Schematic of the linear and nonlinear signal methods used for fingerprint identification. O(x,¢) denotes the observed time-
varying patterns of zonal-mean ozone anomalies; x is an index over the spatial dimensions (latitude and pressure). F(x) is the searched-for
fingerprint — the leading empirical orthogonal function of the zonal-mean ozone response in the ODSonly, GHGonly, or ALL1 simulation.
For each of the three fingerprints, there is an associated leading principal component time series (PCy) that spans the time period of the
observational record. The observations are projected onto each fingerprint, yielding the signal time series, c{F, O}(¢). In the linear signal
method, it is assumed that the time evolution of the fingerprint pattern is quasi-linear over the length of the observational record, and
L-length linear regression coefficients are calculated between c{F, O}(¢) and the time in years; these are the coefficients Bj(L). In the
nonlinear method, the regression is between L-year segments of c¢{F, O}(¢) and the model PC; of the corresponding fingerprint. These are

the regression coefficients Bpc, (L).

As noted in Sect. 2, there is a discrepancy between sim-
ulated and observed SWOOSH tropical lower-stratospheric
ozone post-2005. This is also a region where there is con-
siderable divergence between different observational esti-
mates of ozone changes (WMO, 2014). Both of these factors
(model—data differences and observational uncertainty) moti-
vated the additional analysis with exclusion of ozone changes
in the tropical lower stratosphere from our S/N analysis. In
the tropics excluded case, there is high confidence in our de-
tection of the model ODS signal in the lower stratosphere.
For the two reasons outlined above, we have less confidence
in the interpretation of our S/N results for the global “trop-
ics included” case, especially for method 2 for which the PC
time series are used. Due to the noticeable divergence be-
tween simulated and observed post-2005 ozone changes in
the tropical lower stratosphere, inclusion of the tropics re-
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duces S/ N ratios for our method 2 (i.e., the temporal evolu-
tion of ozone differs over the last decade in observations and
in the ODSonly signal, thus reducing the regression coeffi-
cient in method 2).

The above-described results pertain to the identification of
the model anthropogenic fingerprints in observations. A re-
lated question is the detection time of the GHG signal — the
point in the future at which the currently undetectable GHG
signal might become identifiable if we continued to moni-
tor stratospheric ozone. We can obtain a purely model-based
estimate of this detection time by using the ALL2 ensemble
members that extend to the end of the 21st century and treat-
ing these ensemble members as surrogate observations.

As noted above, S/N ratios for the GHG fingerprint were
approaching the 1 % significance level (our stipulated signal
detection threshold) near the end of SWOOSH observational
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Figure 10. Same as in Figs. 7 and 8 but the ALL2 ensemble members (three total) are used as surrogate observations, yielding information
regarding the estimated detection time for the ODSonly and GHGonly fingerprints in model data. The fj and Bpc, results in (a) and (b) are
for the upper stratosphere (respectively); results in (¢) and (d) are the corresponding method 1 and method 2 for the lower stratosphere.

record (see Figs. 7 and 8). To investigate the expected GHG
fingerprint detection time in “model world”, we use the same
upper- and lower-stratospheric GHG fingerprint patterns that
we searched for in the SWOOSH ozone data (see Figs. 5b
and 6b). We also estimate the model world detection time
for the two ODS fingerprints (Figs. Sa and 6a). In each case,
ozone data from individual realizations of the ALL2 simula-
tion are projected onto the GHG and ODS fingerprints, yield-
ing the signal time series for our method 1 S/N analysis. For
the method 2 S/N analysis, we additionally projected the
20th and 21st century GHG (ODS) ozone anomaly data onto
the GHG (ODS) fingerprints and then regressed the projec-
tion time series obtained with ALL2 onto the projection time
series obtained with the GHG (ODS) data. The method 1 and
method 2 estimates of the denominator of the S/ N ratio were
calculated as described in Sect. 6 but are now computed for
analysis periods spanning the range 10 to 67 years.

Results in Fig. 10 are combined for the upper and lower
stratosphere. The “model only” analysis clearly illustrates
the critical importance of accounting for nonlinearity in the
behavior of the ODS signal. Linear trends provide a reason-

Atmos. Chem. Phys., 18, 143-166, 2018

able fit to the initial ozone depletion phase. As L increases,
however, linear trends are not an accurate representation of
the nonlinear ozone depletion followed by ozone recovery. In
method 1, therefore (which relies on linear trends), the model
world S/ N ratio for the ODS fingerprint is initially above the
detectability threshold but then dips and remains below this
threshold. This transition from a significant to a nonsignif-
icant result occurs around 2012 for the upper stratosphere
and between 2010 and 2020 in the lower stratosphere (see
Fig. 10a and c). Since the time evolution of the GHG-induced
stratospheric ozone changes is more linear, method 1 yields
model world detection of the GHG fingerprint by roughly
2025 in the upper stratosphere and by 2012-2014 in the
lower stratosphere.

Because method 2 accounts for nonlinearity in the time
evolution of the ODS signal, the model world S/N ratios re-
main above the stipulated 1 % significance threshold for all
values of the analysis period L, for both the upper and the
lower stratosphere (see Fig. 10b and d). This is a strikingly
different result from the method 1 S/N ratios for the ODS
fingerprint. The GHG fingerprint is also consistently identi-
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fiable in method 2, with model world detection times similar
to those estimated for method 1. The model results suggest,
therefore, that the GHG fingerprint may not be identifiable in
the SWOOSH data for at least another 5 to 10 years.

Our study relies on a single global climate model
(WACCM). It would be important to determine whether the
S/N results obtained here are consistent with those inferred
from other climate models. Such a multi-model assessment
will require use of models with a well-resolved stratosphere
and with reasonable representation of observed ozone vari-
ability. This will be the focus of subsequent work.

Data availability. The CCMI model simulations from WACCM
can be requested at https://www.earthsystemgrid.org/search.html?
Project=CCMI1.
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