

AMERICAN METEOROLOGICAL SOCIETY

Bulletin of the American Meteorological Society

EARLY ONLINE RELEASE

This is a preliminary PDF of the author-produced manuscript that has been peer-reviewed and accepted for publication. Since it is being posted so soon after acceptance, it has not yet been copyedited, formatted, or processed by AMS Publications. This preliminary version of the manuscript may be downloaded, distributed, and cited, but please be aware that there will be visual differences and possibly some content differences between this version and the final published version.

The DOI for this manuscript is doi: 10.1175/BAMS-D-14-00272.1

The final published version of this manuscript will replace the preliminary version at the above DOI once it is available.

If you would like to cite this EOR in a separate work, please use the following full citation:

Pan, L., E. Atlas, R. Salawitch, S. Honomichl, J. Bresch, W. Randel, E. Apel, R. Hornbrook, A. Weinheimer, D. Anderson, S. Andrews, S. Baidar, S. Beaton, T. Campos, L. Carpenter, D. Chen, B. Dix, V. Donets, S. Hall, T. Hanisco, C. Homeyer, L. Huey, J. Jensen, L. Kaser, D. Kinnison, T. Koenig, J. Lamarque, C. Liu, J. Luo, Z. Luo, D. Montzka, J. Nicely, R. Pierce, D. Riemer, T. Robinson, P. Romashkin, A. Saiz-Lopez, S. Schauffler, O. Shieh, M. Stell, K. Ullmann, G. Vaughan, R. Volkamer, and G. Wolfe, 2016: The Convective Transport of Active Species in the Tropics (CONTRAST) Experiment. *Bull. Amer. Meteor. Soc.* doi:10.1175/BAMS-D-14-00272.1, in press.

1 The Convective Transport of Active Species in the Tropics (CONTRAST) Experiment

2 L. L. Pan¹, E. L. Atlas², R. J. Salawitch³, S. B. Honomichl¹, J. F. Bresch¹, W. J. Randel¹, E. C. Apel¹,
3 R. S. Hornbrook¹, A. J. Weinheimer¹, D. C. Anderson³, S. J. Andrews⁴, S. Baidar⁵, S. P. Beaton¹,
4 T. L. Campos¹, L. J. Carpenter⁴, D. Chen⁶, B. Dix⁵, V. Donets², S. R. Hall¹, T. F. Hanisco⁷, C. R.
5 Homeyer⁸, L. G. Huey⁶, J. B. Jensen¹, L. Kaser¹, D. E. Kinnison¹, T. K. Koenig⁵, J-F Lamarque¹,
6 C. Liu⁹, J. Luo^{1, #}, Z. J. Luo¹⁰, D. D. Montzka¹, J. M. Nicely³, R. B. Pierce¹¹, D. D. Riemer², T.
7 Robinson¹², P. Romashkin¹, A. Saiz-Lopez¹³, S. Schauffler¹, O. Shieh¹², M. H. Stell^{1,14}, K.
8 Ullmann¹, G. Vaughan¹⁵, R. Volkamer⁵, G. Wolfe^{7,16}

9 ¹National Center for Atmospheric Research, Boulder, Colorado, USA

10 ²University of Miami, Florida, USA

11 ³University of Maryland, College Park, Maryland, USA

12 ⁴University of York, York, UK

13 ⁵University of Colorado Boulder, Boulder, Colorado, USA

14 ⁶Georgia Institute of Technology, Atlanta, Georgia, USA

15 ⁷NASA Goddard Space Flight Center, Greenbelt, Maryland, USA

16 ⁸University of Oklahoma, Norman, Oklahoma, USA

17 ⁹Texas A&M University at Corpus Christi, Texas, USA

18 ¹⁰City College of New York, New York, New York, USA

19 ¹¹NOAA Satellite and Information Service (NESDIS) Center for Satellite Applications and
Research (STAR), Madison Wisconsin, USA

21 ¹²University of Hawaii at Mānoa, Hawaii, USA

22 ¹³Institute of Physical Chemistry Rocasolano, CSIC, Madrid, Spain

23 ¹⁴Metropolitan State University, Denver, Colorado, USA

24 ¹⁵University of Manchester, Manchester, UK

25 ¹⁶University of Maryland Baltimore County, Baltimore, Maryland, USA

26 [#]Now at Lanzhou University, Lanzhou, China

27

28 Contact information of the corresponding author:

29 Laura L. Pan,

30 National Center for Atmospheric Research

31 P.O. Box 3000, Boulder, CO 80307-3000

32 Email: liwen@ucar.edu

33 Phone: 303-497-1467

34

35 Submitted to *Bulletin of the American Meteorological Society*, September 30, 2015

36 Revised February 18, 2016

37 **Capsule**

38 Airborne observations over the tropical western Pacific warm pool characterize the role of
39 tropical convection in linking oceanic processes to ozone chemistry in the upper
40 troposphere and lower stratosphere

41 **Abstract:**

42 The Convective Transport of Active Species in the Tropics (CONTRAST) experiment was
43 conducted from Guam (13.5° N, 144.8° E) during January-February 2014. Using the
44 NSF/NCAR Gulfstream V research aircraft, the experiment investigated the photochemical
45 environment over the tropical western Pacific (TWP) warm pool, a region of massive deep
46 convection and the major pathway for air to enter the stratosphere during Northern
47 Hemisphere (NH) winter. The new observations provide a wealth of information for
48 quantifying the influence of convection on the vertical distributions of active species. The
49 airborne in situ measurements up to 15 km altitude fill a significant gap by characterizing
50 the abundance and altitude variation of a wide suite of trace gases. These measurements,
51 together with observations of dynamical and microphysical parameters, provide significant
52 new data for constraining and evaluating global chemistry climate models. Measurements
53 include precursor and product gas species of reactive halogen compounds that impact
54 ozone in the upper troposphere/lower stratosphere. High accuracy, in-situ measurements
55 of ozone obtained during CONTRAST quantify ozone concentration profiles in the UT,
56 where previous observations from balloon-borne ozonesondes were often near or below
57 the limit of detection. CONTRAST was one of the three coordinated experiments to observe
58 the TWP during January-February 2014. Together, CONTRAST, ATTREX and CAST, using

59 complementary capabilities of the three aircraft platforms as well as ground-based
60 instrumentation, provide a comprehensive quantification of the regional distribution and
61 vertical structure of natural and pollutant trace gases in the TWP during NH winter, from
62 the oceanic boundary to the lower stratosphere.

63

64 **1. Introduction and Scientific Motivation**

65 The tropical western Pacific (TWP) warm pool is a uniquely important region for the
66 earth's climate system. The warm pool, often defined by sea surface temperature (SST) in
67 excess of 28 °C (Wyrtki, 1989), is the largest source of latent heat release and water vapor
68 into the atmosphere, and the center of action for the El Niño-Southern Oscillation (ENSO)
69 (Webster and Lukas, 1992). Fueled by the warm sea surface, the region has intense and
70 massive deep convection and precipitation (Liu and Zipser, 2015). At the upper
71 troposphere/lower stratosphere (UTLS) level, strong upwelling during the northern
72 hemisphere (NH) winter season couples to the deep convection to make the TWP region
73 the largest source for tropospheric air entering the stratosphere (Newell and Gould-
74 Stewart, 1981; Fueglistaler et al., 2004; Krüger et al., 2008; Bergman et al., 2012). This is
75 also the region of coldest temperatures in the Tropical Tropopause Layer (TTL) during NH
76 winter (Fueglistaler et al., 2009; Randel and Jensen, 2013); therefore it plays a critical role
77 in controlling the amount of water vapor that enters the lower stratosphere (Newell and
78 Gould-Stewart, 1981; Holton and Gettelman, 2001; Schoeberl et al., 2011). The effect of
79 dehydration in the region is reflected in satellite cloud observations, which show that the

80 region has the largest fraction of high clouds (17-18 km level) (e.g., Yang et al., 2010) and
81 significant occurrence of clouds above the tropopause (Pan and Munchak, 2011).
82 The unique thermal and dynamical behaviors of this region also create a special chemical
83 environment. A number of field studies and satellite data have identified extremely low O₃
84 in the region, near or below the detection limit of typical ozonesondes. This is especially
85 true at the TTL level where measurements of O₃ below 20 ppbv suggest a major
86 contribution of convectively lifted air from the oceanic boundary layer (e.g., Kley et al.,
87 1996; Crawford et al., 1997; Thompson et al., 2011; Rex et al., 2014). This low ozone
88 environment may have an impact on the abundance of hydroxyl radical (OH) in the
89 troposphere, which is a significant agent for self-cleaning of the atmosphere. Deep
90 convection connects emissions from oceanic biological processes to the UTLS. Thus, the
91 UTLS over the oceanic warm pool region is expected to have elevated concentrations of
92 organic halogen species such as dibromomethane (CH₂Br₂), bromoform (CHBr₃) and
93 methyl iodide (CH₃I). These compounds are significant contributors to the input of reactive
94 bromine and iodine into the mid to upper tropical troposphere where they, along with their
95 inorganic breakdown products, represent an important component of the natural
96 background ozone budget (Saiz-Lopez et al., 2012; Wang et al., 2015). These short-lived
97 halogens and their inorganic oxidation products may have additional impacts on
98 stratospheric chemistry (Salawitch et al., 2005; Fernandez et al., 2014; Saiz-Lopez et al.,
99 2015). Our measurements in the TWP were designed to address current uncertainties in
100 both the halogen-mediated loss of ozone in the UTLS as well as the budget and partitioning
101 of reactive halogen inputs to the stratosphere.

102

103 Recognizing the importance of the TWP region, a number of large-scale field experiments
104 have been conducted to investigate a range of atmospheric dynamics and chemistry
105 questions. Ocean-atmosphere coupling was the focus of Tropical Ocean – Global
106 Atmosphere Coupled Ocean Atmosphere Response Experiment (TOGA-COARE) (1988),
107 which deployed large arrays of soundings and collected measurements from multiple
108 aircraft (Webster and Lukas, 1992). The NASA Global Tropospheric Experiment (GTE)
109 program conducted a series of airborne studies using the DC-8 aircraft and obtained
110 detailed chemical information over the tropical Pacific, including the warm pool region (e.g.,
111 Hoell et al., 1999) up to 12 km altitude. The Biomass Burning and Lightning Experiment
112 (BIBLE) campaign, using a Gulfstream II research aircraft, focused on the impact of
113 lightning and biomass burning emissions of aerosols and trace gases on ozone chemistry
114 (Kondo, et al., 2002). Despite these studies, the impact of convection on chemistry in the
115 warm pool region has not previously been well characterized, especially at the TTL level
116 (13-17 km). **Figure 1** shows the climatological location of the warm pool in the NH winter
117 season and locations of ozonesonde launch sites, which indicate the lack of ozone
118 measurements in the core of the warm pool. The lack of adequate observations of trace gas
119 composition, including ozone and reactive halocarbons, in the warm pool region leaves a
120 significant gap in our understanding of the chemistry within the TTL and the transport into
121 stratosphere over the TWP.

122 A broad range of scientific objectives motivated the coordination of three airborne
123 experiments for research over the TWP warm pool. The objectives required aircraft with
124 the appropriate instrument payloads that could cover altitudes from the marine boundary
125 layer (MBL) to the lower stratosphere (LS). The major objectives addressed by the three

126 aircraft complement include better understanding the role of deep convection in coupling
127 the MBL to UTLS chemical composition, characterization of the processes controlling water
128 vapor and short-lived chemical species transported into the stratosphere, definition of the
129 abundance and partitioning of halogen species and their impact on UTLS ozone, and
130 evaluation of the chemical coupling of ocean and atmospheric oxidation capacity in the
131 warm pool region. The experiments were all based in Guam (13.5° N, 144.8° E) with
132 research flights conducted during January and February 2014. The Airborne Tropical
133 Tropopause Experiment (ATTREX) used the high-altitude NASA Global Hawk (GH) to sample
134 chemical and microphysical parameters at altitudes between ~14-18 km (see ATTREX
135 overview by Jensen et al., this issue). The Coordinated Airborne Studies in the Tropics
136 (CAST) experiment used the UK FAAM BAe 146 research aircraft to measure a large suite of
137 chemical tracers from the MBL up to ~7 km altitude (see CAST overview by Harris et al.,
138 this issue). The CONTRAST experiment used the NSF/NCAR Gulfstream V (GV) research
139 aircraft to sample a wide variety of chemical species from the MBL to ~ 15 km. The concept
140 of the coordinated campaigns is illustrated in [Figure 2](#).

141 This article provides an overview for the CONTRAST experiment, including discussions of
142 scientific synergy with the other two coordinated experiments. Within the context of the
143 coordinated campaigns, the main scientific objectives of the CONTRAST experiment were:

144 • Characterizing the influence of deep convection on the chemical composition and the
145 photochemical budget of O₃ at the level of convective outflow over the western Pacific
146 • Evaluating the budget of organic and inorganic bromine and iodine in the TTL
147 • Investigating transport pathways from the oceanic surface to the tropopause using
148 coordinated flights with CAST BAe-146 and ATTREX GH

149 This overview presents the design and implementation of the CONTRAST experiment, the
150 background information for using CONTRAST data, and selected scientific and operational
151 highlights. These highlights are chosen to promote new research opportunities that
152 CONTRAST data may enable. The description of the operation and facility may also serve
153 as a useful reference for future field campaign planning.

154 **2. Meteorological Setting of the Experiment**

155 Located at the northern edge of the warm pool near the division of rising and sinking
156 branches of the Hadley cell in the NH winter season, Guam was an ideal base for the
157 campaign. The GV flights from Guam have access to areas of active convection (to the
158 south) and to the subtropical jet stream (to the north). Furthermore, the flight operations
159 and instrument maintenance were less challenging since the island was in its dry season,
160 and excellent logistical support for airborne operations was available on Guam.

161 [Figure 3](#) shows the distribution of the 12-14 km cloud fraction from CloudSat data, together
162 with additional key dynamical elements important to the Guam operational domain. The
163 wind direction and the geopotential height (GPH) indicate that, over the region of
164 persistent deep convection, the upper tropospheric flow is dominated by a large-scale
165 anticyclonic pattern that is symmetrically distributed with respect to the convective axis
166 (Dima and Wallace, 2007). The GV nominal operational range is represented in Figure 3 by
167 the circle of 1500 nautical miles (nmi) radius. An additional circle of 1000 nmi radius is
168 shown in Figure 3 to indicate the range when planning extensive loitering was considered
169 in the flight plan. The northern part of the research domain includes an intense jet stream,
170 illustrated by contours of wind speed greater than 50 m/s. The jet core marks the

171 dynamical division of the tropics and extratropics. The increase of potential vorticity (PV)
172 near the jet indicates the rapid change of air mass character from tropospheric to
173 stratospheric at UTLS levels.

174 Winter 2014 was characterized as ENSO-neutral with a Niño index of about –0.5 (NOAA
175 CPC, http://www.cpc.ncep.noaa.gov/products/analysis_monitoring/enso_disc_mar2014/).
176 SST anomalies over the Western Pacific were slightly positive (+1 °C) between 0 and 10 °N
177 during January and February on the northern side of the climatological warm pool. The
178 equatorial trough was a common feature in low latitudes during the period with a few
179 periods of enhanced low-level convergence over the study region. Two significant Madden-
180 Julian Oscillation (MJO) events occurred during the study period. The first, during the
181 second half of January, was accompanied by the formation of tropical storms Lingling and
182 Kajiki near the Philippines. These storms may have helped Guam receive near-record
183 January rainfall. The second MJO event occurred in late February and was accompanied by
184 the formation of Typhoon Faxai, which was located mostly east of Guam (145 °E). Repeated
185 cold fronts/shear lines moved from the north to Guam's latitude during early 2014, which
186 enhanced surface northeasterlies and promoted low-level convergence and precipitation.

187 **3. Design and Operation of the Experiment**

188 **3.1 Platform and Payload**

189 The base in Guam coupled with the range and duration of the NSF/NCAR Gulfstream V (GV)
190 aircraft allowed sampling from MBL to the lower TTL, including the level of the main
191 convective outflow (12-14 km) in the warm pool region. With the CONTRAST payload and
192 aircraft configuration, the GV typically flew at flight altitudes between 13-14 km with a

193 flight ceiling near 15 km (~48,000 feet in pressure altitude). **Figure 4** and **Table 1**
194 summarize the GV payload configuration during the CONTRAST experiment.
195 To meet the scientific objectives of the CONTRAST mission, the GV payload was designed to
196 characterize the chemical and photochemical environment of TWP at all altitudes,
197 especially the level of convective outflow. The instrument payload had sensors for various
198 trace gases, aerosols, and radiation. The trace gas measurements were aimed at gases with
199 different sources, atmospheric trends, and chemical lifetimes. These trace gas properties
200 allowed an examination of long range and convective transport and chemical reactivity in
201 the CONTRAST region.
202 To measure organic halogen composition, the payload included a combination of the
203 Advanced Whole Air Sampler (AWAS), a canister sampling system, the Trace Organic Gas
204 Analyzer (TOGA), an *in situ* online gas chromatograph/mass spectrometer (GC/MS), and
205 fast-response instrumentation for CO, CO₂, and CH₄. The TOGA and AWAS provide
206 complementary measurements of trace gases. TOGA measured approximately 75 volatile
207 organic compounds (VOCs), including C₃-C₈ nonmethane hydrocarbons (NMHC),
208 halocarbons, organic nitrates, and several C₁-C₄ oxygenated VOC (OVOC) (Apel et al., 2015).
209 The AWAS measured a full suite of NMHC, halocarbons, and organic nitrates at high
210 precision but with lower spatial resolution compared to TOGA. A number of trace gases
211 measured by both systems provided good overlap for data comparison and complementary
212 sampling. In addition, whole air samplers were deployed on all three aircraft (see Jensen et
213 al. and Harris et al., this issue) and provide a consistent dataset from the MBL to the LS (see
214 Figure 9 in section 4).

215 Measurements of radiation and relevant reactive gases provided data to define the
216 photochemical environment of the tropical UT, to examine the impact of convective inputs
217 on ozone chemistry, and to evaluate inorganic halogenated products produced from
218 organic precursors. These measurements included actinic flux, ozone, formaldehyde, nitric
219 oxide and nitrogen dioxide (or NO_x , the sum of the pair), and halogen radical species. The
220 NO_x measurements also provided information on the input of lightning-produced nitric
221 oxide in this area of deep convection.

222 To evaluate the budget and partitioning of bromine in the TTL, organic bromine precursors
223 were measured by AWAS and TOGA. Selected inorganic bromine species were measured in
224 situ by chemical ionization mass spectrometry (CIMS) (Huey, 2007), and remote sensing
225 Airborne Multi AXis Differential Optical Absorption Spectroscopy (AMAX-DOAS) (Baidar et
226 al., 2013; Volkamer et al., 2015). In addition, iodine oxide (IO) was measured by AMAX-
227 DOAS (Dix et al., 2013; Volkamer et al., 2015). The AMAX-DOAS and CIMS data also provide
228 a link to comparable measurements on the GH and BAe-146 aircraft. Finally, the payload
229 also included cloud and aerosol measurements for determining aerosol size distributions
230 and for evaluating heterogeneous chemical processing.

231 **3.2 Research Flights**

232 A total of 16 GV research flights were made during the CONTRAST campaign including 3
233 transit flights and 13 local flights conducted in Guam. The ground tracks of these flights are
234 shown in [Figure 5](#). The Guam based flights sampled latitudes between 20°S and 40°N and
235 altitudes between ~100 m and ~15 km above sea level (see flight tracks in altitude-latitude
236 space in Figure 11). Extensive vertical sampling of the atmosphere in the study region

237 resulted in more than 100 complete profiles during the campaign. These profiles include
238 the eastern and the central Pacific, but most were conducted in the TWP.

239 The research flights were planned according to seven scenarios, each designed to meet a
240 set of observational objectives:

- 241 1. Domain survey (RF01-04, RF07, RF14): this type of flight was designed to map out
242 the background distributions and gradients of compounds of different lifetimes and
243 source/sink distribution. Gradients include those from the eastern to western
244 Pacific, as well as those within the Guam domain. This type of flight typically
245 covered the largest sampling range, including excursions out of the nominal domain.
- 246 2. Fresh convective outflow (RF05, RF09-12, RF14): this type of flight was designed to
247 sample the outflow of ongoing convection and to contrast the enhancement of short-
248 lived species within outflow to the upper tropospheric background, that is
249 influenced by more aged convection as well as long-range transport.
- 250 3. Dawn/dusk (RF08, RF13): this type of flight was designed to investigate
251 photochemical evolution and halogen partitioning that occurs during the transition
252 from daylight to darkness and vice versa. The strategy was to sample the same air
253 mass through the period of solar zenith angle change. To accomplish this, the center
254 of anticyclonic flow was targeted as a relatively stagnant air mass for chemical
255 characterization and photochemical evolution.
- 256 4. Stratospheric survey (RF06, RF15): this type of flight was designed to sample the
257 northern part of the domain to contrast the chemical composition of the tropical UT
258 with that of the extratropical LS.

259 5. Dynamical boundaries and structures (RF06, RF10, RF14): these flights were special
260 surveys conducted in response to the presence of dynamical boundaries in the flight
261 domain, such as a shear line and a crossing of the ITCZ. The goal was to characterize
262 the role of these dynamical structures as physical boundaries to chemical
263 composition.

264 6. Ozonesonde co-location (RF09, RF11, RF12, RF14): these flights involved a segment
265 of sampling over Guam or Manus Island (2° S) when there was a coincident
266 ozonesonde launch from the ATTREX or CAST team. The comparison over Manus
267 was particularly important, since ozonesonde calibration issues are challenging in
268 the convectively influenced TTL (Newton et al, 2016).

269 7. BAe-146 or Global Hawk coordination (RF08, RF11, RF12): this type of flight
270 involved two or three aircraft flying on the same day, sampling a geographic region
271 close to the same time. The coordinated flights between the GV and the BAe146
272 were typically designed to have a segment of “repeated track”, in which the same
273 region and altitude was sampled by the two aircraft sequentially with a short time
274 separation to allow for instrument comparisons.

275 [Table 2](#) provides a brief summary of the research flights with relevant flight scenarios
276 noted by numbers. As shown in the table, often more than one scenario was involved for a
277 given flight. The table also shows the flight information regions (FIRs) within which each
278 research flight was conducted. The GV operated in the Oakland Oceanic FIR (USA) for the
279 majority of the flight hours. Flight operations in other FIRs (Fukuoka FIR (Japan) and Port
280 Moresby FIR (Papua New Guinea)) were more difficult due to numerous issues. An example
281 was discussed in section 4.5.

282 **3.3 Forecasting tools and platform**

283 CONTRAST flight planning and forecasting employed a suite of models that covered the
284 range of dynamical and chemical processes relevant to the science goals. NCEP's Global
285 Forecast System (GFS) and NCAR's Weather Research and Forecasting (WRF) community
286 model aided the meteorological forecasts for CONTRAST. The 0.5° GFS pressure-level data
287 files were used to produce 5-day forecast plots at 6-hour increments and were made
288 available in the project's Field Catalog (described below). The Advanced Research WRF
289 (ARW, Skamarock et al. 2008) was run in real-time at the NCAR/Wyoming Supercomputing
290 Center to provide a more detailed 72-hour forecast of moist convection, clouds, and winds
291 over the study region. The ARW was configured in a 15-km, 40-level grid covering much of
292 the western Pacific with a 3-km nested grid.

293 Chemical forecasting was an important part of flight planning. CAM-chem, a global
294 chemistry-climate model (Lamarque et al., 2012) run in the specified dynamics mode (i.e.,
295 nudged by observed winds, hereafter referred to as CAM-chem-SD), was run operationally
296 during the CONTRAST field phase to provide 72-hour chemical forecasts for mission
297 planning. The model was configured in 1×1 degree horizontal resolution with 56 levels
298 from the surface to 2 hPa and used in its specified-dynamics configuration, driven with
299 NASA GMAO/GEOS-5 meteorological fields. The model chemistry includes a detailed
300 representation of tropospheric and stratospheric chemistry (~180 species; ~500 chemical
301 reactions), including very short-lived (VSL) halogens (details are found in Fernandez et al.,
302 2014 and Saiz-Lopez et al., 2014). The model routinely forecast distributions of trace gas
303 species including ozone, hydroxyl radical (OH), nitrogen oxides ($\text{NO}_x = \text{NO} + \text{NO}_2$), carbon
304 monoxide (CO), bromine oxide (BrO), iodine oxide (IO), and VSL organic halogens, e.g.,

305 bromoform (CHBr_3), dibromomethane (CH_2Br_2), and methyl iodide (CH_3I). This
306 combination of species assisted the science team in flight planning that could, for example,
307 delineate aged versus more recently polluted air masses, identify areas of stratospheric
308 intrusions, or target air that had been recently lofted by convection.

309

310 In addition to CAM-chem-SD, the Real-time Air Quality Modeling System (RAQMS) (Pierce
311 et al., 2007) and the Monitoring Atmospheric Composition & Climate (MACC) (Flemming et
312 al., 2009), both of which assimilate global satellite data, provided complementary chemical
313 forecast information. In particular, RAQMS provided a number of additional short-lived
314 MBL tracers, such as dimethyl sulfide (DMS) and methyl ethyl ketone (MEK) during the
315 campaign. The MACC forecast assimilated comprehensive global observations of chemical
316 composition combined with the ECMWF meteorological forecasting system. MACC provided
317 plots for the operation domain of O_3 , CO , CH_4 , NO_x , black carbon, HCHO , OH , NO , NO_2 , OH ,
318 and HO_2 and provided comparisons to the CAM-chem-SD forecasts of chemical fields.

319

320 **Figure 6** shows forecast plots for RF10 as an example, where the CAM-chem-SD forecasted
321 a “CO river” that was primarily a biomass burning plume from southeast Asia transported
322 by the jet stream to the Guam region, and the WRF model successfully forecast the
323 presence of the ITCZ in the domain. Both the “CO river” and the ITCZ were successfully
324 sampled in RF10. The former is further discussed in Section 4.4.

325

326 The large suite of forecast materials were integrated and documented on the NCAR EOL
327 Field Catalog for the CONTRAST project (<http://catalog.eol.ucar.edu/contrast>). The Field

328 Catalog provided a virtual operations center that allowed team members to participate in
329 the daily briefings, either in the field or from their home institutions. The Catalog also
330 served to document the information flow during the experiment for future reference. In
331 general, the forecast models provided good guidance for flight planning that allowed
332 successful sampling of targeted meteorological and chemical features of interest. The main
333 limitation of the forecast models (including the 3-km ARW simulations) was their difficulty
334 in representing the observed evolution of convective systems over the low-latitude ocean
335 regions. The experience and additional analyses by the forecasters were important in these
336 cases.

337

338 **3.4 Flight planning and operation.**

339 A daily operations meeting was held in the CONTRAST operations center in Guam on most
340 aircraft maintenance days. The daily meeting was a key step in gathering the science team's
341 input for flight planning. Typically, different flight scenario options were discussed after
342 the weather briefing and chemical forecast. The priority of different flight options was
343 defined by the campaign science objectives, while meteorological conditions and chemical
344 forecast dictated the practical possibilities of near term flight operations. Planning of the
345 RF10 mission serves as a good example. After extensive team discussion, both pollution
346 transport ("CO river", Fig. 6a) and the impact of dynamical structures on chemical
347 composition (ITCZ, Fig. 6b) were included in the flight plan. Typically, a flight or no-flight
348 decision for the next-day was made by the end of the meeting.

349 Following the daily operations meeting in the morning, the Principal Investigators (PIs)
350 and the operation center team would proceed with making an initial flight plan that was
351 reviewed by the pilots, who filed the adjusted flight plan with the relevant air traffic control
352 centers (ATCs). The plan was adjusted several hours before flight, if necessary, based on
353 updated meteorological information from models and satellite imagery. The final flight
354 plan was filed two hours before take-off.

355

356 **3.5 Nowcasting and real time decision-making**

357 Because of rapid development and uncertain movement of convective systems, nowcasting
358 and real-time decision-making were an important part of flight operations. The near-real-
359 time satellite images from MTSAT2 were essential for providing information on convection.
360 The NCAR EOL Field Catalog Map and Mission Coordinator Map were visible to the flight
361 scientist onboard the GV and also to mission support at the Operations Center. These maps
362 were essential tools for real-time flight monitoring and decision-making. [Figure 7](#) gives an
363 example of the real-time display from the Field Catalog Map, which integrates the real-time
364 aircraft position with the near real-time operational products. The display shows the real-
365 time position of all three aircraft on 13 February 2014, near 04:00 UTC, and the location of
366 the convective systems targeted by the GV. As indicated by the figure, this flight
367 successfully sampled convective outflow from widespread active convection southwest of
368 Guam. An example of trace-gas measurements from this flight will be shown in next
369 section.

370 The flight on 13 February (RF11) also provided a good example of real-time flight plan
371 adjustment. Initially the flight was planned to pass the convective region at different
372 altitudes to sample the air above and within the convective outflow. The mission scientist
373 requested flight level 43 Kft to be above the convection when the research aircraft entered
374 the active region for the first pass. The altitude request was based on estimated altitude
375 from the satellite IR image. During this segment, a 5 m/s updraft was sampled (see figure
376 8). The flight level for the second pass was requested at 37 Kft, but it was found to be too
377 low (visually below the outflow cloud layer). The decision was made to request a third
378 pass at 40 Kft, which resulted in the sampling of significant boundary layer tracer
379 enhancement associated with a 13 m/s updraft (Figure 8). The ATC response time over the
380 oceanic region with no radar was at least 15 to 20 minutes, which was reflected by the
381 large loop of the GV flight track out of the convective region (Figure 7).

382

383 **4. Scientific and Observational Highlights**

384 **4.1 Sampling convective outflow**

385 One of the key observational objectives was sampling air masses in regions of active
386 convective outflow, as well as nearby air masses not influenced by recent convection, to
387 quantify the influence of convection on the composition of the TWP troposphere. Targeting
388 active convection is a significant challenge for flight operations in general, but especially
389 over oceanic domains such as the TWP because of the absence of ground-based weather
390 radar coverage. Aided by the real-time information described in section 3, the GV
391 succeeded in targeting active convection during multiple flights in CONTRAST.

392 [Figure 8](#) shows an example of the impact of active convection on the chemical composition
393 of the UT using data acquired during RF11 conducted on 13 February 2014. The figure
394 shows a 3-hour segment of the flight, during which the GV sampled the same convective
395 system (as shown in satellite IR map in [Figure 7](#)) three times at different altitudes.
396 Convectively generated turbulence and the region of strong upward motion are indicated
397 by the vertical wind velocity. Two time periods of active convection sampled are marked
398 by the ~ 5 m/s (near 02:00 UTC) and the ~ 13 m/s (between 03:49 and 03:54 UTC) updraft
399 events. Selected chemical species measured by the TOGA instrument demonstrate the
400 strong impact of convection on the composition of UT air masses, indicated by the contrast
401 of the air masses from inside to outside of convective outflow. The three selected species
402 are all relatively short-lived with estimated lifetimes ranging from less than a day for
403 acetaldehyde (Millet et al., 2010) and DMS (Langner and Rodhe, 1991) to days for MEK (e.g.,
404 Calvert et al., 2011). These species can all be produced by marine biological processes
405 (Carpenter et al., 2010). They were all observed at elevated mixing ratios in the marine
406 boundary layer during this flight. At the flight level of ~ 12 km, these species exhibit low
407 mixing ratios characteristic of the background UT outside of the active convection region.
408 The low background levels reflect the rapid decrease of their abundance with altitude.
409 Significant enhancement was observed during both periods of sampling near a convective
410 updraft. In the vicinity of the 13 m/s updraft, the mixing ratios show values only slightly
411 less than in the boundary layer, indicating very little processing or mixing took place
412 during transport of the air masses between the surface and the 12-km level.

413 **4.2 Impact of convection on vertical distribution of VSL halocarbons**

414 An important objective of CONTRAST was to quantify the abundance of the halogenated
415 VSL compounds throughout tropospheric column of the TWP. Bromine chemistry is
416 important for the photochemistry of O_3 in both the stratosphere and the tropical
417 troposphere (e.g., Ko et al. ,1997; Saiz-Lopez and von Glasow, 2012; Salawitch et al., 2005;
418 Frieler et al., 2006; Carpenter and Reimann, 2014). Additionally, measurements and
419 modeling suggest that halogen cycles involving both bromine and iodine could contribute
420 to chemical loss of O_3 in the tropical atmosphere (e.g., Saiz-Lopez et al. ,2012, 2015; Dix et
421 al., 2013; Carpenter et al., 2013; Volkamer et al., 2015; Wang et al., 2015), though we focus
422 just on bromine here.

423 [Figure 9a](#) shows the profile in the TWP of the total bromine content of the two most
424 important bromine-bearing VSL species, CH_2Br_2 and $CHBr_3$, using data from all three
425 aircraft. Detailed descriptions of the data and the result of inter-comparisons are given by
426 Andrews et al. (2015). These bromocarbons are produced by biological processes in the
427 tropical ocean and have lifetimes in the upper troposphere of ~ 17 days ($CHBr_3$) and ~ 150
428 days (CH_2Br_2) (Carpenter and Reimann, 2014). The measurements shown in [Figure 9a](#)
429 demonstrate the impact of convection on VSL bromocarbons and highlight the vertical
430 structure of total bromine that can be obtained by synergistic sampling conducted by three
431 aircraft. The profile displays a pronounced reverse “S” shape, with strong decrease above
432 the MBL and enhancement between 10 and 15 km altitude, which is a clear signature of
433 convective uplifting of MBL air. The layer of enhancement is largely consistent with the
434 peak in cloudiness as derived from the CloudSat cloud profiling radar ([Figure 9b](#))
435 (Stephens et al., 2008). The vertical distribution of the cloud fraction serves as an
436 illustration of the convective outflow layer. Numerous details concerning the outflow (e.g.,

437 the level where maximum mass is detrained) can be obtained from analysis of the radar
438 profiles of the anvils, as discussed in Takahashi and Luo (2012). Hence, cloud radar and
439 VSL chemical compound measurements offer consistent and complementary views of the
440 deep convective outflow and transport in the TWP.

441 The amount of total VSL bromine at the tropopause (about 17 km) defines one pathway for
442 transport of bromine from VSL compounds to the stratosphere, termed Source Gas
443 Injection (SGI). The result in Figure 9a, when supplemented by the bromine content of
444 other VSL species such as CHBr_2Cl , CH_2BrCl , and CHBrCl_2 that will soon be available, will
445 represent the first experimental determination of SGI of bromine in the TWP. The other
446 route for stratospheric supply of bromine from VSL compounds, Product Gas Injection
447 (PGI), represents cross tropopause transport of inorganic species. The value of PGI will be
448 quantified by ATTREX measurements of BrO in the tropical lowermost stratosphere as well
449 as CONTRAST measurements of BrO in the extra-tropical lowermost stratosphere, obtained
450 on RF15 by the CIMS and DOAS instruments.

451 **4.3 Ozone over the TWP warm pool**

452 The CONTRAST research flights included significant profile measurements spanning from near
453 the surface to above 14 km. Together with takeoffs and landings there were nearly 100 vertical
454 profiles over the domain. CONTRAST has provided the first extensive in situ measurements of
455 ozone within the UT over the warm pool of the TWP, where routine sampling does not occur and
456 very few prior observations (e.g., Rex et al., 2014 and references therein) are available. Ozone
457 profiles typical of the CONTRAST measurements, from RF04, are shown in [Figure 10a](#). Ozone
458 in the UT (> 9 km) was near 20 ppbv throughout the experiment, with little variability either in
459 space or time ([Figure 11](#)). Ozone mixing ratios near the surface and in the MBL were typically

460 between 10 and 20 ppbv, as shown in Figure 10a for RF04, as well as throughout other
461 CONTRAST flights (Figure 11). Consequently, the persistent upper tropospheric ozone values
462 near 20 ppbv are consistent with the strong influence of convective outflow of low-level air (Pan
463 et al., 2015).

464 The airborne measurements during CONTRAST often showed enhanced ozone over the lower-
465 middle troposphere (~3-9 km), with values typically 40-80 ppbv (Figure 10a). The enhanced
466 ozone occurred in persistent layers and filaments, which were furthermore characterized by
467 extremely dry air (relative humidity < 45%) (Figure 10b). The strong correlation of enhanced
468 ozone with dry layers is similar to previous observations (e.g. Thouret et al., 2001; Hayashi et al.,
469 2008), although the layers observed in CONTRAST were more persistent. These dry, enhanced
470 ozone layers over ~3-9 km (320-340 K in potential temperature coordinates) were a ubiquitous
471 feature observed during CONTRAST. The layers occurred so frequently that the statistical
472 distribution of ozone over this altitude region exhibits a bi-modal distribution, with a primary
473 mode near 20 ppbv and an enhanced mode centered on ozone near 60 ppbv (Pan et al., 2015).

474 The mechanisms producing the structure shown in Figure 10 are a topic of active research.
475 Contributions from large-scale dynamics, i.e. transport and mixing, as well as ozone production
476 in plumes of biomass burning (Anderson et al., 2016) are leading candidates under investigation.
477 Figure 11 shows that the occurrence of the ozone layers are mainly in the ~320-340 K isentropic
478 levels. At these levels isentropic mixing could connect the air mass in the tropical low to mid-
479 troposphere to the UTLS region in midlatitudes near the subtropical jet. This structure suggests a
480 large-scale dynamical influence, which is consistent with the interpretations of the dry layers by
481 the TOGA COARE community (e.g., Yoneyama and Parsons, 1999). On the other hand, tracer
482 measurements show a significant signature of combustion of plant matter that provides

483 compelling chemical evidence that biomass burning also contributes significantly to the
484 enhanced O₃ layers (Anderson et al., 2016). Because the dataset includes a large suite of
485 chemical species that can provide chemical signatures of transport and chemical processing,
486 CONTRAST data can be used to better quantify the contributing mechanisms of these high
487 ozone – low water structures.

488

489 **4.4 Pollution in the tropics and at the TTL level**

490 Anthropogenic impact on the remote TWP region was the main focus of several previous
491 experiments (Gregory et al., 1999; Kondo et al., 2002; Jacob et al., 2003). Although not
492 explicitly included in the original objectives of the CONTRAST experiment, the influence of
493 human activity on the chemical composition of the remote TWP warm pool region is
494 directly relevant to ozone budget, oxidizing capacity, and impact of convection for this
495 region of the atmosphere. CONTRAST data have provided the first intensive chemical
496 sampling of the troposphere overlying the TWP warm pool during NH winter. During the
497 experiment, GV flights targeted a number of cases where a significant difference of polluted
498 versus clean air masses was observed. These cases include: 1) measurements both north
499 and south of a well-defined ITCZ (RF10), 2) measurements in front of and behind a shear
500 line, which moved into tropics from the northeast Asian continent (RF06), 3) sampling of a
501 pollution plume brought into the TWP domain by the jet stream and the region's
502 anticyclonic flow (RF10, the "CO river"), and 4) observations of the polluted TTL over
503 Papua New Guinea versus the more pristine TTL over the Coral Sea (RF14).

504 [Figure 12](#) shows the successful sampling of the long-range transport of air pollution on 10
505 February 2014 (RF10). Based on the chemical forecast by NCAR CAM-chem-SD (see figure
506 6) and MACC CO field (not shown), the flight was designed to target a pollution plume that
507 was flowing into the Guam domain from Southeast Asia and along the equator flank of the
508 jetstream. The flight succeeded in documenting the highest mixing ratio of CO measured
509 over the TWP in the entire campaign (~ 130 ppbv), providing an interesting case
510 characterized as the “CO river”. The figure also shows a layer of high ozone well correlated
511 with elevated CO, indicating the associated photochemical production of O₃ from pollutants
512 emitted over the continent. Additional hydrocarbon measurements by TOGA suggest
513 biomass burning may have played a role in the origin of this plume.

514

515 The TTL survey flight on 22 February 2014 (RF14) observed stark differences between
516 strongly polluted and clean regions of the TTL. This 9 hour and 30 min flight covered a
517 large latitude range, from Guam to the Coral Sea (13.5°N – 20°S) ([Figure 13a](#)). The flight
518 provided the southernmost set of observations for the entire campaign. Most of the flight
519 was downwind from active convection. While under convective influence, the TTL was
520 moderately polluted for most of the flight, as shown by elevated levels of benzene ([Figure](#)
521 [13b](#)). The highest level of pollution was observed over the island of Papua New Guinea
522 (PNG) ($\sim 8^{\circ}$ S), where the GV flew through moderate deep convection and sampled the
523 influence of direct convective pumping of biomass burning on the island. A region of
524 extremely clean air was sampled over the Coral Sea ($\sim 18^{\circ}$ S), indicated by the mixing ratio
525 of benzene being near the detection limit of the TOGA instrument. This clean air region
526 provided unique measurements to chemically characterize the pristine tropical UT

527 conditions with no immediate pollution source and under calm weather. The contrast of
528 clean versus polluted air in the TTL is important for characterizing the impact of
529 anthropogenic activity, coupled with deep convection around the maritime continents, on
530 the composition of the UT.

531 **4.5 GV-ozonesonde coordinated flights**

532 A significant fraction of prior ozone profile measurements in the tropical troposphere have
533 been obtained by ozonesondes. These measurements include data from the Southern
534 Hemisphere ADDitional OZonesondes (SHADOZ) network (Thompson et al., 2011), which
535 does not routinely sample the warm pool atmosphere over the TWP (Figure 1 shows
536 ozonesonde launch locations), as well as ozonesondes launched from several ship- based
537 field experiments in the TWP (Rex et al., 2014, and references therein). Extremely low
538 ozone values at the level of convective outflow in UT (i.e., at the base of the TTL) have been
539 reported from these ozonesonde measurements in the TWP (Kley et al., 1996; Rex et al.,
540 2014). The low ozone environment has been hypothesized to suppress the presence of
541 hydroxyl radicals (OH), which controls the lifetime of a large suite of chemical species (Rex
542 et al., 2014). However, the physical interpretation of these low ozone cases is challenged
543 by the uncertainty in background current calibration of ozonesondes (Vömel and Diaz,
544 2010).

545 Quantification of O₃ at the level of convective outflow in the UT over the TWP, and
546 assessment of ozonesonde calibration, were motivating factors for the planning of a GV
547 overflight of Manus Island (2° S) within a short window of an ozonesonde launch by the
548 CAST team. Overflights of Manus by the GV were carried out on 4 and 22 of February 2014

549 (RF09 and RF14). Flight permission issues and air traffic control challenges posed
550 significant limitations to the flights and prevented the GV from performing a complete
551 profile near the site of the ozonesonde launch. Specifically, RF09 was the first flight
552 operation crossing the equator into the Port Moresby FIR working with Papua New Guinea
553 (PNG) ATC. The flight plan started with MBL sampling first once entered Port Moresby FIR,
554 followed by ascending to the flight ceiling near the Manus Island. When GV arrived on
555 station near the Manus Island for collocated profiling with the ozonesonde launch, the PNG
556 ATC kept the plane at flight level 34 Kft for a commercial flight to pass at 38 Kft. This
557 altitude hold used up the filed flight pattern, which was planned to loop up to the TTL level.
558 The ATC did not give the team a chance to repeat the flight pattern at higher altitudes once
559 the commercial airliner passed. The lessons learned from RF09 led to a different strategy
560 in planning for RF14, resulting in a successful partial profile at the TTL level with the co-
561 located ozonesonde from Manus Island in this second attempt. Despite the difficulties in
562 operations, the two flights obtained co-located partial profiles of O_3 that have been used to
563 validate the ozonesonde calibration (Newton et al., 2016).

564

565 [Figure 14](#) shows the flight track, ozonesonde profile, and the co-located GV partial O_3
566 profile between 13 and 15 km during RF14. The GV data were obtained for the altitude
567 range where the question of whether near-zero ozone in the balloon observations is
568 actually real (Kley et al., 1996) or is due to varying background current (Vömel and Diaz,
569 2010) had yet to be resolved. The GV in situ O_3 instrument, based on chemiluminescence
570 (Ridley et al., 1992), has a low detection limit of 0.1 ppbv and high vertical resolution of

571 near 7 m during profiling. For the entire campaign, the lowest measured amount of ozone
572 in the upper troposphere was 13 ppbv.

573 The intercomparison results show a consistent picture. By not exposing the ozonesonde to
574 ozone during preparation, and by assuming a constant background current measured in
575 the laboratory immediately before launch, ozonesonde profiles were measured and agreed
576 with the GV to 3 ppbv between 150 and 200 mb (Newton et al, 2016). This is within the
577 expected error limits of the sondes. Further, during the entire CAST ozonesonde campaign
578 the minimum repeatable ozone concentration in the TTL from the Manus ozonesondes was
579 12 ppbv, again very consistent with the GV.

580

581 **5. Forward from the field phase**

582 The CONTRAST experiment succeeded in obtaining a large suite of trace gas measurements,
583 together with dynamical and microphysical variables, under a wide range of conditions
584 over the TWP. The intensive sampling of actinic flux, ozone, water vapor, and other active
585 species will allow constrained photochemical calculation of hydroxyl radical over the TWP,
586 which will lead to a better understanding of the processes that control atmospheric
587 oxidation capacity in the tropical western Pacific. Oxidation processes in the tropical
588 atmosphere play a major role in the global budget of many trace gases, including
589 greenhouse gases. The region has added significance because the major transport of
590 tropospheric air into the lower stratosphere occurs over the TWP.
591 The flights successfully sampled air masses in convective updraft, and outflow both near
592 and downstream of active convection. The data will enable individual case studies and

593 statistical quantification of the impact of convection and convective transport on the
594 vertical distribution of a wide range of compounds with different photochemical lifetimes.

595

596 Within the context of the coordinated experiments, the CONTRAST, ATTREX, and CAST
597 campaigns obtained the vertical distribution of a large number of reactive gases relevant to
598 chemistry-climate interactions, especially a unique data set of halogenated VSL species
599 from the oceanic surface to the LS over the TWP. These measurements, along with
600 measurements of inorganic halogen product gases, will add new capability to evaluate the
601 processes that control the reactive halogen chemistry, extending from the MBL, through
602 the TTL, and into the LS. The ocean sources and sinks of these gases, as well as a range of
603 oxygenated organic gases (such as formaldehyde) will be examined from the
604 measurements that were collected during the campaigns. Accurate representation of the
605 impact of deep convection on the chemical environment is a major challenge for CCMs.
606 Observational information from CONTRAST will provide important constraints, especially
607 for the remote TWP troposphere.

608

609 Finally, CONTRAST data provided the first intensive in situ observations of ozone in the
610 TTL over the oceanic warm pool. The measurements filled an important data gap by
611 coordinating in situ measurements with co-located ozonesonde profiles, which resulted in
612 a new understanding of ozonesonde uncertainty (Newton et al., 2016) and quantified the
613 low ozone level over the TWP TTL. The repeated vertical profiles of chemical distributions
614 during CONTRAST also led to the discovery of a bimodal ozone distribution in the free
615 troposphere between ~ 3-9 km over the TWP (Pan et al., 2015). The controlling

616 mechanism(s) of the two modes, and how well the modes are represented in global CCMs,
617 are topics of active research (Anderson et al., 2016).

618 CONTRAST data are publicly available for all researchers and can be obtained at
619 http://data.eol.ucar.edu/master_list/?project=CONTRAST.

620

621

622 **Acknowledgements**

623 Funding for this work was provided by the National Science Foundation (NSF) via its
624 sponsorship of the National Center for Atmospheric Research (NCAR).

625 The CONTRAST experiment was sponsored by the (NSF). We acknowledge the excellent
626 field project support provided by NCAR/EOL during flight operations. We give special
627 thanks to the GV pilots and mission coordinators for their knowledge, skills and dedication;
628 these were essential to the success of this campaign.

629 The MACC forecasts was funded by the European Union's Seventh Framework Programme
630 (FP7) under grant agreement no. 283576.

631 The views, opinions, and findings contained in this report are those of the author(s) and
632 should not be construed as an official National Oceanic and Atmospheric Administration or
633 U.S. Government position, policy, or decision.

634

635 **Appendix A. List of Abbreviations**

636 ATTREX: Airborne Tropical Tropopause Experiment

637 BIBLE: Biomass Burning and Lightning Experiment

638 CAM-chem: Community Atmosphere Model with Chemistry

639 CAST: Coordinated Airborne Studies in the Tropics

640 CCM: Chemistry Climate Model

641 CONTRAST: Convective Transport of Active Species in the Tropics

642 ECMWF: European Center for Medium-Range Weather Forecasting

643 ENSO: El Niño-Southern Oscillation

644 EOL: Earth Observing Laboratory

645 FAAM: Facility for Airborne Atmospheric Measurements

646 FIR: Flight Information Region

647 GEOS-5: Goddard Earth Observing System Model, Version 5

648 GFS: Global Forecast System

649 GMAO: Global Modeling and Assimilation Office

650 GTE: Global Tropospheric Experiment

651 HIAPER: High-performance Instrumented Airborne Platform for Environmental Research

652 IGAC: International Global Atmospheric Chemistry

653 ITCZ: Inter Tropical Convergence Zone

654 MACC: Monitoring Atmospheric Composition and Climate

655 MJO: Madden-Julian Oscillation

656 MTSAT: Multi-functional Transport Satellite

657 RAQMS: Real-time Air Quality Modeling System

658 SHADOZ: Southern Hemisphere Additional Ozonesondes

659 SPARC: Stratospheric Processes and their Role in Climate

660 TOGA COARE: Tropical Ocean – Global Atmosphere (TOGA) Coupled Ocean Atmosphere

661 Response Experiment (COARE)

662 TORERO: Tropical Ocean tRoposphere Exchange of Reactive halogens and Oxygenated

663 hydrocarbons

664 WCRP: World Climate Research Programme

665 WOUDC: World Ozone and Ultraviolet Radiation Data Centre

666 WRF: Weather Research and Forecasting Model

667

668

669

670

671

672 **References**

673 Anderson, D. C., et al., 2016: A pervasive role for biomass burning in tropical high
674 ozone/low water structures, *Nature Communications*, 7, doi:10.1038/ncomms10267.

675 Andrews, S. J. et al., A comparison of very short-lived halocarbon (VSL) aircraft
676 measurements in the West Tropical Pacific from CAST, ATTREX and CONTRAST,
677 submitted to ACPD, 2015.

678 Apel, E. C., Hornbrook, R. S., Hills, A. J., Blake, N. J., Barth, M., Crawford, J. H., Homeyer, C. R.,
679 Cantrell, C. A., Rutledge, S., Weinheimer, A. J., Fried, A., Blake, D. R., Brune, W., Pollack, I.,
680 Peischl, J., Ryerson, T., and Riemer, D. D., 2015: Upper tropospheric ozone production
681 from lightning NO_x-impacted convection: Smoke ingestion case study from the DC3
682 campaign, *J. Geophys. Res. Atmos.*, 120, doi:10.1002/2014JD022121.

683 Baidar, S., H. Oetjen, S. Coburn, B. Dix, I. Ortega, R. Sinreich, and R. Volkamer, 2013: The CU
684 Airborne MAX-DOAS Instrument: Vertical Profiling of Aerosol Extinction and Trace
685 Gases. *Atmos. Meas. Tech.*, 6(3), 719-719-739, doi: 10.5194/amt-6-719-2013.

686 Bergman, J. W., E. J. Jensen, L. Pfister, Q. Yang, 2012: Seasonal differences of vertical-
687 transport efficiency in the tropical tropopause layer: on the interplay between tropical
688 deep convection, large-scale vertical ascent, and horizontal circulations, *J. Geophys. Res.*,
689 117, D05302, doi: 10.1029/2011JD016992.

690 Calvert, J., A. Mellouki, and J. Orlando, 2011: *Mechanisms of Atmospheric Oxidation of the*
691 *Oxygenates*, Oxford University Press, USA, 1634 pp.

692 Carpenter, L. J. and S. Reimann (Lead Authors), J.B. Burkholder, C. Clerbaux, B.D. Hall, R.
693 Hossaini, J.C. Laube, and S.A. Yvon-Lewis, 2014: Ozone-Depleting Substances (ODSs) and
694 Other Gases of Interest to the Montreal Protocol, Chapter 1 in Scientific Assessment of
695 Ozone Depletion: 2014, Global Ozone Research and Monitoring Project –Report No. 55,
696 World Meteorological Organization, Geneva, Switzerland.

697 Carpenter, L. J., et al., 2010: Seasonal characteristics of tropical marine boundary layer air
698 measured at the Cape Verde Atmospheric Observatory, *J. Atmos. Chem.* 67, 87-140,
699 doi:10.1007/s10874-011-9206-1.

700 Carpenter, L. J., MacDonald, S. M., Shaw, M. D., Kumar, R., Saunders, R. W., Parthipan, R.,
701 Wilson, J., and Plane, J. M. C., 2013: Atmospheric iodine levels influenced by sea surface
702 emissions of inorganic iodine, *Nature Geosci.*, 6, 108–111, doi:10.1038/ngeo1687.

703 Corti, T., B. P. Luo, T. Peter, H. Vo"mel, and Q. Fu (2005), Mean radiative energy balance and
704 vertical mass fluxes in the equatorial upper troposphere and lower stratosphere,
705 *Geophys. Res. Lett.*, 32, L06802, doi:10.1029/2004GL021889.

706 Crawford, J. H., and Coauthors, 1997: Implications of large scale shifts in tropospheric NO_x
707 levels in the remote tropical Pacific, *J. Geophys. Res.*, 102(D23), 28447–28468,
708 doi:10.1029/97JD00011.

709 Dima, I. M., and J. M. Wallace, 2007: Structure of annual-mean equatorial planetary waves. *J.*
710 *Atmos. Sci.*, 64, pp. 2862-2880.

711 Dix, B., S. Baidar, J.F. Bresch, S.R. Hall, K.S. Schmidt, S. Wang, and R. Volkamer. Detection of
712 Iodine Monoxide in the Tropical Free Troposphere. 2013, PNAS, 110(6), 2035-2040,
713 doi: 10.1073/pnas.1212386110.

714 Fernandez, R. P., R. J. Salawitch, D. E. Kinnison, J.-F. Lamarque, and A. Saiz-Lopez, 2014:
715 Bromine partitioning in the tropical tropopause layer: implications for stratospheric
716 injection, *Atmos. Chem. Phys.*, 14, 17857-17905, doi: 10.5194/acp-14-13391-2014.

717 Flemming, J., A. Inness, H. Flentje, V. Huijnen, P. Moinat, M. G. Schultz, and O. Stein, 2009:
718 Coupling global chemistry transport models to ECMWF's integrated forecast system,
719 *Geosci. Model Dev.*, 2, 253-265, doi: 10.5194/gmd-2-253-2009.

720 Frieler, K., M. Rex, M., R. J. Salawitch, T. Carty, M. Streibel, R. M. Stimpfle, K. Pfeilsticker, M.
721 Dorf, D. K. Weisenstein, and S. Godin-Beekmann, S., 2016: Toward a better quantitative
722 understanding of polar stratospheric ozone loss. *Geophys. Res. Lett.*, 33,
723 10.1029/2005GL025466.

724 Fueglistaler, S., H. Wernli, and T. Peter, 2004: Tropical troposphere-to-stratosphere
725 transport inferred from trajectory calculations, *J. Geophys. Res.*, 109, D03108, doi:
726 10.1029/2003JD004069.

727 Fueglistaler, S., A. E. Dessler, T. J. Dunkerton, I. Folkins, Q. Fu, and P. W. Mote, 2009: Tropical
728 Tropopause Layer, *Rev. Geophys.*, 47, RG1004, doi: 10.1029/2008RG000267.

729 Gregory, G. L., et al. (1999), Chemical characteristics of Pacific tropospheric air in the region
730 of the Intertropical Convergence Zone and South Pacific Convergence Zone, *J. Geophys.*

731 Res., 104(D5), 5677–5696, doi:10.1029/98JD01357.Hoell, J. M., and Coauthors, 1999:
732 Pacific Exploratory Mission in the tropical Pacific: PEM-Tropics A, August-September
733 1996, *J. Geophys. Res.*, 104(D5), 5567–5583, doi: 10.1029/1998JD100074.

734 Hayashi, H., Kita, K., and Taguchi, S.: Ozone-enhanced layers in the troposphere over the
735 equatorial Pacific Ocean and the influence of transport of midlatitude UT/LS air, *Atmos.*
736 *Chem. Phys.*, 8, 2609-2621, doi:10.5194/acp-8-2609-2008, 2008.

737 Holton, J.R., and A. Gettelman, 2001: Horizontal transport and the dehydration of the
738 stratosphere, *Geophys. Res. Let.*, 28, 14, 2799-2802, doi:10.1029/2001GL013148.

739 Huey, L. G. (2007), Measurement of trace atmospheric species by chemical ionization mass
740 spectrometry: Speciation of reactive nitrogen and future directions, *Mass Spectrom.*
741 *Rev.*, 26(2),166-184.

742 Jacob, D.J., J.H. Crawford, M.M. Kleb, V.S. Connors, R.J. Bendura, J.L. Raper, G.W. Sachse, J.C.
743 Gille, L. Emmons, and C.L. Heald, The Transport and Chemical Evolution over the Pacific
744 (TRACE-P) aircraft mission: design, execution, and first results, *J. Geophys. Res.*, 108,
745 9000, 10.1029/2002JD003276, 2003.

746 Jensen, E. J. and Coauthors, The NASA Airborne Tropical TRopopause EXperiment
747 (ATTREX): high-altitude aircraft measurements in the tropical western Pacific,
748 submitted to *Bull. Amer. Meteor. Soc.*

749 Kley, D., P. J. Crutzen, H. G. J. Smit, H. Vömel, S. J. Oltmans, H. Grassl, V. Ramanathan, 1996:
750 Observations of near-zero ozone concentrations over the convective Pacific: effects on
751 air chemistry, *Science*, 274, 230-233, doi:10.1126/science.274.5285.230.

752 Ko, M. K. W., N.-D. Sze, C. J. Scott, and D. K. Weisenstein (1997), On the relation between
753 stratospheric chlorine/bromine loading and short-lived tropospheric source gases, *J.*
754 *Geophys. Res.*, 102(D21), 25507–25517, doi:10.1029/97JD02431.

755 Kondo, Y., and Coauthors, 2002: Effects of biomass burning, lightning, and convection on O₃,
756 CO, and NO_y over the tropical Pacific and Australia in August–October 1998 and 1999, *J.*
757 *Geophys. Res.*, 107, 8402, doi: 10.1029/2001JD000820.

758 Krüger, K., S. Tegtmeier, and M. Rex, 2008: Long-term climatology of air mass transport
759 through the Tropical Tropopause Layer (TTL) during NH winter, *Atmos. Chem. Phys.*, 8,
760 813–823, doi:10.5194/acp-8-813-2008.

761 Langner, J and H. Rodhe, 1991: A global three-dimensional model of the tropospheric sulfur
762 cycle, *J. Atmos Chem.* 13, 225-264.

763 Lamarque, J.-F., and Coauthors, 2012: CAM-chem: description and evaluation of interactive
764 atmospheric chemistry in the Community Earth System Model, *Geosci. Model Dev.*, 5,
765 369-411, doi:10.5194/gmd-5-369-2012.

766 Liu, C., and E. J. Zipser, 2015: The global distribution of largest, deepest, and most intense
767 precipitation systems, *Geophys. Res. Lett.*, 42, 3591-3595, doi:10.1002/2015GL063776.

768 Millet, D. B., Guenther, A., Siegel, D. A., Nelson, N. B., Singh, H. B., de Gouw, J. A., Warneke, C.,
769 Williams, J., Eerdeken, G., Sinha, V., Karl, T., Flocke, F., Apel, E., Riemer, D. D.,
770 Palmer, P. I., and Barkley, M.: Global atmospheric budget of acetaldehyde: 3-D model
771 analysis and constraints from in-situ and satellite observations, *Atmos. Chem. Phys.*, 10,
772 3405-3425, doi:10.5194/acp-10-3405-2010, 2010.

773 Newell, R. E., and S. Gould-Stewart, 1981: A stratospheric fountain?, *J. Atmos. Sci.*, 38, 2789-
774 2796, doi: 10.1175/1520-0469(1981)038<2789:ASF>2.0.CO;2.

775 Newton, R., Vaughan, G., Ricketts, H. M. A., Pan, L. L., Weinheimer, A. J., and Chemel, C. 2016:
776 Ozonesonde profiles from the West Pacific Warm Pool: measurements and validation,
777 *Atmos. Chem. Phys.*, 16, 619-634, doi:10.5194/acp-16-619-2016.

778 Pan, L. L., and L. A. Munchak, 2011: Relationship of cloud top to the tropopause and jet
779 structure from CALIPSO data, *J. Geophys. Res.*, 116, D12201,
780 doi:10.1029/2010JD015462.

781 Pan, L.L., S. B. Honomichl, W. J. Randel, E. C. Apel, E. L. Atlas, S. P. Beaton, J. F. Bresch, R.
782 Hornbrook, D. E. Kinnison, J-F Lamarque, A. Saiz-Lopez, R. J. Salawitch, and A. J.
783 Weinheimer, 2015: Bimodal distribution of free tropospheric ozone over the tropical
784 western Pacific revealed by airborne observations, *Geophys. Res. Lett.*, Doi:
785 10.1002/2015GL065562.

786 Pierce, R. B., and Coauthors, 2007: Chemical data assimilation estimates of continental U.S.
787 ozone and nitrogen budgets during the Intercontinental Chemical Transport
788 Experiment–North America, *J. Geophys. Res.*, 112, D12S21, doi:10.1029/2006JD007722.

789 Randel, W. J., E. J. Jensen, 2013: Physical processes in the tropical tropopause layer and
790 their roles in a changing climate, *Nature Geoscience*, 6, doi:10.1038/NGEO1733.

791 Rex, M., and Coauthors, 2014: A tropical West Pacific OH minimum and implications for
792 stratospheric composition, *Atmos. Chem. Phys.*, 14, 4827-4841, doi:10.5194/acp-14-
793 4827-2014.

794 Ridley, B. A., F. E. Grahek, and J. G. Walega, A small, high-sensitivity, medium-response
795 ozone detector for measurements from light aircraft, *J. Atmos. Oceanic Technol.*, 9, 142-
796 148, 1992.

797 Saiz-Lopez A., and Coauthors, 2012: Estimating the climate significance of halogen-driven
798 ozone loss in the tropical marine troposphere, *Atmos. Chem. Phys.*, 11, 32003-32029,
799 doi:10.5194/acp-12-3939-2012.

800 Saiz-Lopez, A., and R. von Glasow, 2012: Reactive halogen chemistry in the troposphere,
801 *Chem. Soc. Rev.*, 41, 6448-6472, doi:10.1039/C2CS35208G.

802 Saiz-Lopez, A., R. P. Fernandez, C. Ordóñez, D. E. Kinnison, J. C. Gómez Martín, J. F. Lamarque,
803 and S. Tilmes, 2014: Iodine chemistry in the troposphere and its effect on ozone, *Atmos.*
804 *Chem. Phys.*, 14(23), 13,119–13,143.

805 Saiz-Lopez, A., et al. , 2015: Injection of iodine to the stratosphere, *Geophys. Res. Lett.*, 42,
806 6852–6859, doi:10.1002/2015GL064796.

807 Salawitch, R. J., D. K. Weisenstein, L. J. Kovalenko, C. E. Sioris, P. O. Wennberg, K. Chance, M.
808 K. W., Ko, and C. A. McLinden, 2005: Sensitivity of ozone to bromine in the lower
809 stratosphere, *Geophys. Res. Let.*, 32, L05811, doi: 10.1029/2004GL021504.

810 Schoeberl, M. R. and A. E. Dessler, 2011: Dehydration of the stratosphere, *Atmos. Chem.*
811 *Phys.*, 11, 8433-8446, doi:10.5194/acp-11-8433-2011, 2011.

812 Skamarock, W. C., and Coauthors, 2008: A Description of the Advanced Research WRF
813 Version 3, NCAR Technical Note NCAR/TN-475+STR, doi: 10.5065/D68S4MVH.

814 Stephens, G. L., et al., 2008: CloudSat mission: Performance and early science after the first
815 year of operation, *J. Geophys. Res.*, 113, D00A18, doi:10.1029/2008JD009982.

816 Takahashi, H., and Z. Luo, 2012: Where is the level of neutral buoyancy for deep
817 convection?, *Geophys. Res. Lett.*, 39, L15809, doi:10.1029/2012GL052638.

818 Thompson A. M., S. J. Oltmans, D. W. Tarasick, P. von der Gathen, H. , (2011) Strategic Ozone
819 Sounding Networks: Review of Design and Accomplishments, *Atmospheric*
820 *Environment*, 45, 13, 2145-2163, doi:10.1016/j.atmosenv.2010.05.002.

821 Thouret, V., J. Y. N. Cho, M. J. Evans, R. E. Newell, M. A. Avery, J. D. W. Barrick, G. W. Sachse,
822 and G. L. Gregory (2001), Tropospheric ozone layers observed during PEM-Tropics B, *J.*
823 *Geophys. Res.*, 106(D23), 32527–32538, doi:10.1029/2001JD900011.

824 Vömel, H and K. Diaz (2010), Ozone sonde cell current measurements and implications for
825 observations of near-zero ozone concentrations in the tropical upper troposphere,
826 *Atmos. Meas. Tech.*, 3, 495-505.

827 Volkamer, R., Baidar, S., Campos, T.L., Coburn, S., DiGangi, J.P., Dix, B., Eloranta, E.W., Koenig,
828 T.K., Moley, B., Ortega, I., Pierce, B.R., Reeves, M., Sinreich, R., Wang, S-Y., Zondlo, M.A.
829 and Romashkin, P.A., 2015: Aircraft measurements of BrO, IO, glyoxal, NO₂, H₂O, O₂-O₂
830 and aerosol extinction profiles in the tropics: Comparison with aircraft-/ship-based in
831 situ and lidar measurements, *Atmos. Meas. Tech.* 8, 2121-2148. doi:10.5194/amt-8-
832 2121-2015.

833 Wang, S-Y., J.A. Schmidtd, S. Baidar, S. Coburn, B. Dix, T.K. Koenig, E.C. Apel, D. Bowdalo, T.L.
834 Campos, E. Eloranta, M.J. Evans, J.P. diGangii, M.A. Zondlo, R-S. Gao, J.A. Haggerty, S.R.
835 Hall, R.S. Hornbrook, D.J. Jacob, B. Morley, B.R. Pierce, M. Reeves, P.A. Romashkin, A. ter
836 Schure, and R. Volkamer, 2015: Active and Widespread Halogen Chemistry in the
837 Tropical and Subtropical Free Troposphere, Proc. Natl. Acad. Sci., 112 (30), 9281–9286.
838 doi: 10.1073/pnas.1505142112.

839 Webster, P. J. and R. Lukas, 1992: TOGA COARE: The Coupled Ocean-Atmosphere Response
840 Experiment, Bull. Amer. Meteor. Soc., 73, 1377-1416, doi: 10.1175/1520-
841 0477(1992)073<1377:TCTCOR>2.0.CO;2.

842 Wyrtki, K., 1989: Some thoughts about the West Pacific Warm Pool, in: J. Picaut, et al. Eds.,
843 Proc. of Western Pacific International Meeting and Workshop on TOGA COARE. 99-109.

844 Yang, Q., Q. Fu, and Y. Hu (2010), Radiative impacts of clouds in the tropical tropopause
845 layer, J. Geophys. Res., 115, D00H12, doi:10.1029/2009JD01239.

846 Yoneyama, K., and D. B. Parsons, 1999: A mechanism for the intrusion of dry air into the
847 tropical western Pacific region. J. Atmos. Sci., 56, 1524–1546.

848

849

850 **Figure Captions**

851 **Figure 1.** Thirty-year climatology of January-February sea surface temperature (SST),
852 highlighting the TWP warm pool. The SST, shown by the color shaded contours, is from
853 NOAA Optimum Interpolation data version 2 (Reynolds et al., 2002). The 30-year mean 193
854 K temperature contour at the 100 hPa pressure level (black contour) is shown to indicate
855 the coldest region of TTL. Also shown are locations of ozonesonde measurements (white
856 circles) obtained from WOUDC (<http://woudc.org/home.php>), which include the SHADOZ
857 stations.

858 **Figure 2.** Concept of the coordinated campaigns. This schematic highlights the three
859 research aircraft and the altitude ranges of their sampling in relation to the dynamical
860 background. The key feature of the background is deep convection that nearly reaches the
861 tropopause and which pumps marine boundary layer air into the TTL (~13-17 km). The
862 level of full-sky net zero radiative heating, estimated to be near 14 km, is typically used to
863 indicate the transition into mean upward motion driven by large-scale dynamical control
864 (Corti et al., 2005).

865 **Figure 3.** Some key UTLS dynamical elements of the TWP during the CONTRAST campaign
866 period. The figure shows the campaign domain, centered at Guam. The magenta and cyan
867 circles indicate the nominal GV flight range (1000 and 1500 nmi radius respectively). The
868 gray-blue-yellow-orange shading shows the 12-14 km cloud fractions calculated using the
869 CloudSat data, indicating the region dominated by frequent deep convection. The pink
870 stipple shading shows the frequency of 200 hPa PV>1 PVU (1 PVU = $10^{-6} \text{ m}^{-2} \text{ K s}^{-1} \text{ kg}^{-1}$)
871 during the campaign period, based on the GFS analyses. The increase in this frequency of

872 PV>1 PVU indicates the transition from the tropics to extratropics. The red contours are
873 selected 200 hPa geopotential height (GPH, in km) levels indicating the region under the
874 influence of mean anticyclonic circulation (Dima and Wallace, 2007). Blue arrows show the
875 200 hPa wind field; the 50 and 60 m/s wind speed contours are used to indicate the
876 seasonal mean location of the northern hemispheric subtropical jet.

877 **Figure 4.** CONTRAST GV payload configuration. See Table 1 for instrument details. The
878 cabin instruments are shown by their inlet locations (with exception of TOGA, its inlet was
879 behind the fuselage in this takeoff photo). The colors are used to indicate the instrument
880 type: chemistry (red), microphysics (purple), radiation (magenta), and the digital camera
881 (green).

882 **Figure 5.** CONTRAST flight operation domain and the GV flight tracks (RF02-RF16). The
883 operational domain is marked by the magenta and cyan circles, which indicate the nominal
884 GV flight range with or without extensive profiling (1000 and 1500 nmi radius
885 respectively). The red ring close to Guam indicates the region covered by the Guam ATC
886 radar. The green lines mark the boundaries of Flight Information Regions (FIRs). As shown,
887 most of the GV flights were operated within the Oakland Oceanic FIR (USA). Three
888 additional FIRs flown were Fukuoka (JPN), Port Moresby (PNG), and Brisbane (AUS).

889 **Figure 6.** Examples of operational weather and chemical forecast plots for RF10 (flight day
890 8 February 2014). a) CAM-chem-SD 200 hPa CO (color shade) and wind field (pink arrows)
891 forecast that shows an intense CO plume moving into the Guam domain following the jet
892 stream. Also shown is the 2 PVU contour at 200 hPa, which marks the division of tropical
893 UT and extratropical LS. b) The WRF forecast of surface wind (wind barb vectors) and

894 precipitating convection (shaded), which predicts an ITCZ near 7°N indicated by the
895 surface wind convergence and the line of convection.

896 **Figure 7.** An example of a coordinated flight and the GV targeting active convection. This
897 figure shows the real-time display from the Catalog Map on 13 Feb 2014 near 0400 UTC,
898 around the time the GV sampled the region of convective outflow (see Figure 8). Active
899 convection was widespread southwest of Guam, as revealed by the MTSAT IR (color
900 shading) and visible (gray) channels. The yellow and red lines show flight tracks for each of
901 the three aircraft (red indicates the track for the last hour).

902 **Figure 8.** Time series of flight altitudes, vertical velocity, and mixing ratios of selected
903 short-lived compounds during a 3-hour segment of RF11 (12 February 2014) when the GV
904 was targeting the outflow from active convection (see GV location and the region of active
905 convection during this time period in Fig. 7). The active convection regions are indicated by
906 increases in updraft velocity (~ 5 m/s and 13 m/s, respectively). For the aircraft location
907 and the convection, see Fig. 7, which shows satellite IR channel near 04:00 UTC. As
908 indicated by the track in Fig. 7, the GV repeatedly targeted the convective region at
909 different altitudes. The two time periods of successful sampling of fresh outflow
910 (associated with the updraft velocity 5 m/s and 13 m/s) the GV was at 43 Kft (~ 14 km)
911 and 40 Kft (~ 11 km), respectively. The location of the updraft was in the vicinity of the
912 aircraft position shown in Fig. 7. The tropopause was at ~17 km. The corresponding
913 enhancements of short-lived species in the UT are shown using TOGA observations of
914 acetaldehyde (CH_3CHO), methyl ethyl ketone (MEK; $\text{CH}_3\text{C(O)CH}_2\text{CH}_3$), and dimethyl sulfide
915 (DMS; CH_3SCH_3). DMS and MEK are below the detection limit (1 pptv) for the majority of

916 the UT time segment with the exception of the updraft region, especially during 03:49 -
917 03:54 UTC.

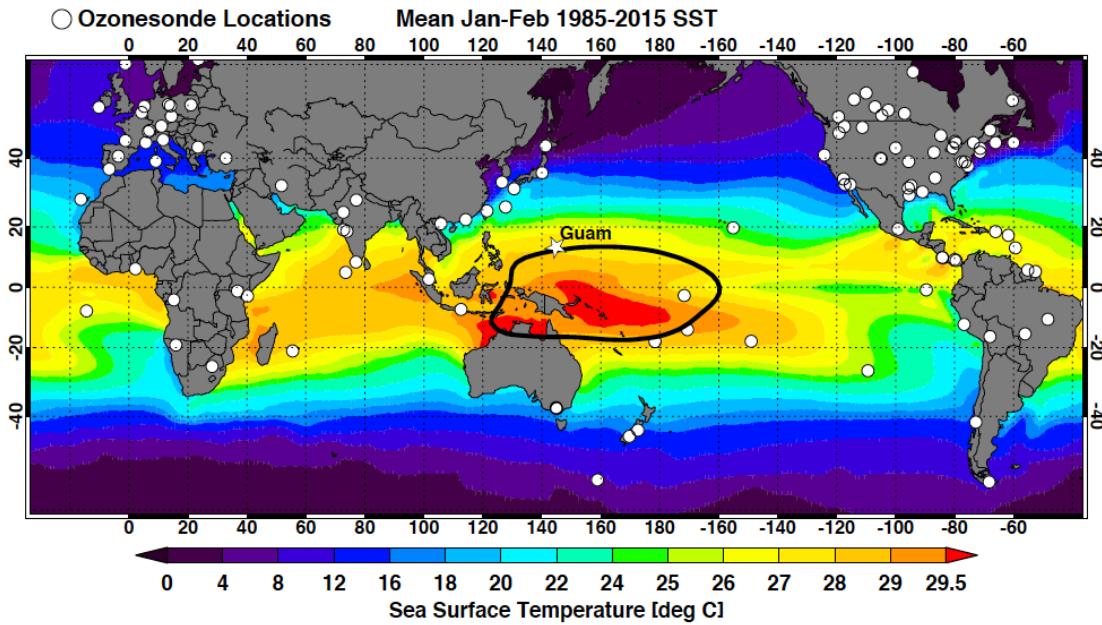
918 **Figure 9.** (a) Vertical distribution of the total bromine content from two short-lived
919 organic bromocarbons ($2x\text{CH}_2\text{Br}_2 + 3x\text{CHBr}_3$) from GV TOGA (gray) and whole air
920 samplers on all three aircraft (Cyan: BAe146, Blue: GV, Red: Global Hawk). The gray line
921 represents the median profile derived using all four data sets. (b) Latitude-height cross-
922 section of the mean cloud fraction of the region (140° and 150° E) during the period of the
923 CONTRAST campaign, calculated using CloudSat satellite data.

924 **Figure 10.** Ozone (a) and water vapor (b) data from RF04, as an example of the ozone
925 profile structure, with layers of ozone enhancement that are coincident with layers of
926 water vapor reduction. Relative humidity (RH) levels corresponding to the measured
927 water vapor and temperature are also shown (black curves).

928

929 **Figure 11.** The GV flight tracks for all flights colored by the O_3 mixing ratio. Also included
930 are mean large-scale dynamical structures of the campaign period and domain,
931 represented by the tropopause height (black dots), 2 PVU contour (red dash), subtropical
932 jet location (40, 50, 60 m/s horizontal wind, blue contour) and mean isentropes, all given in
933 sectional zonal mean for 130° - 160° E longitude range.

934

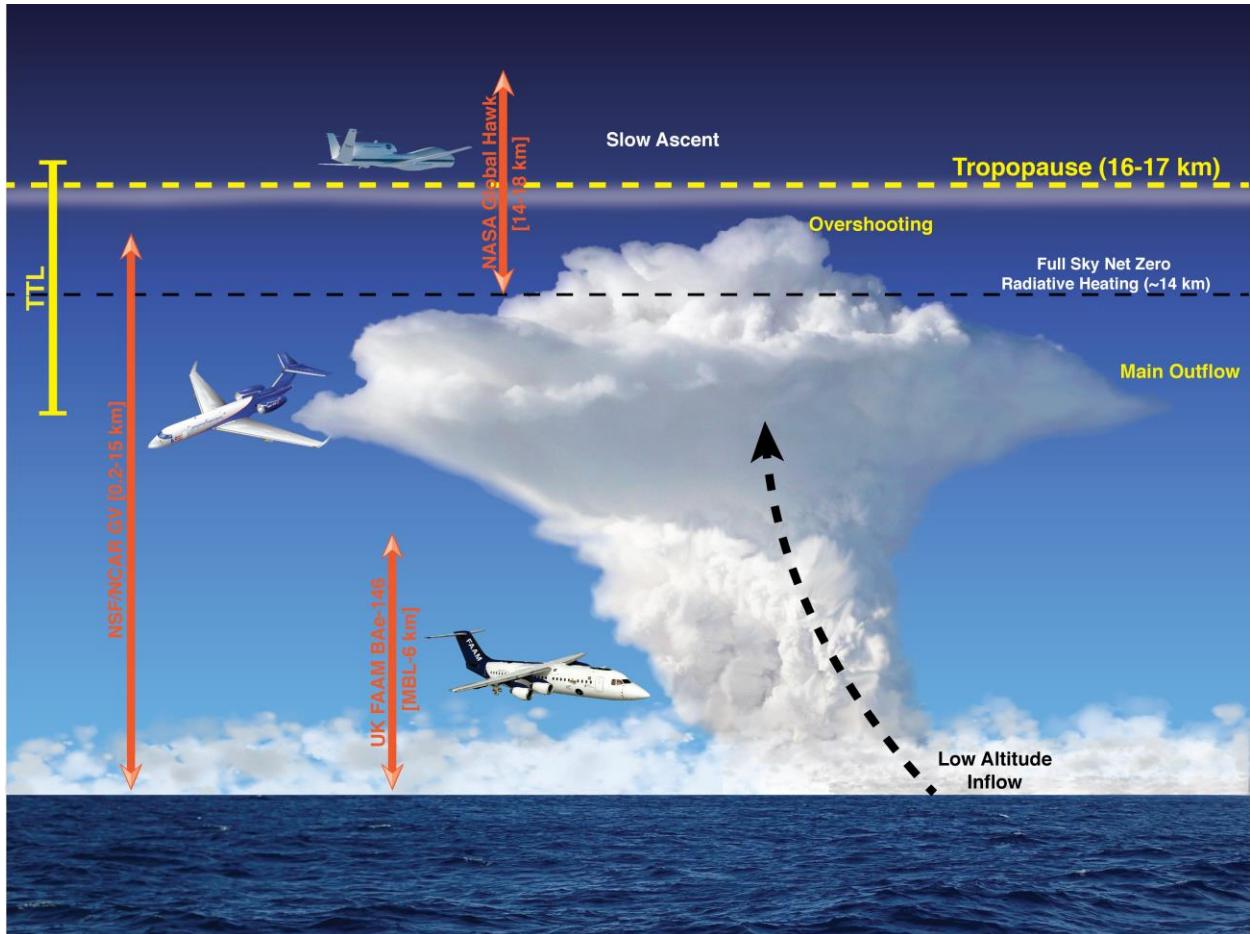

935 **Figure 12.** (a) CAM-chem-SD model simulation of CO at the 300 hPa level as well as the
936 aircraft flight track (yellow) and (b) the GV measurements of CO and O_3 in the “CO river”
937 during RF10 on 8 February 2014. The portion of the flight track corresponding to the in

938 situ profile shown in (b) is marked in red on the map (a). The maximum CO enhancement is
939 shown to be \sim 8.5 km altitude (\sim 300hPa pressure level).

940 **Figure 13.** Chemical gradients at the TTL level shown by TOGA Benzene data from RF14
941 flight on 22 February 2014. (a) The flight track shows the large latitude range (\sim 15° N –
942 20°S) sampled. The flight was conducted in three FIRs: 1) Oakland Oceanic (USA), 2) Port
943 Moresby (PNG) and 3) Brisbane (AUS). (b) Benzene mixing ratio from TOGA highlights the
944 strong contrast of air over PNG (\sim 8°S) and the Coral Sea (south of 10°S). The black arrows
945 above the tracks indicate the outbound/inbound flight directions.

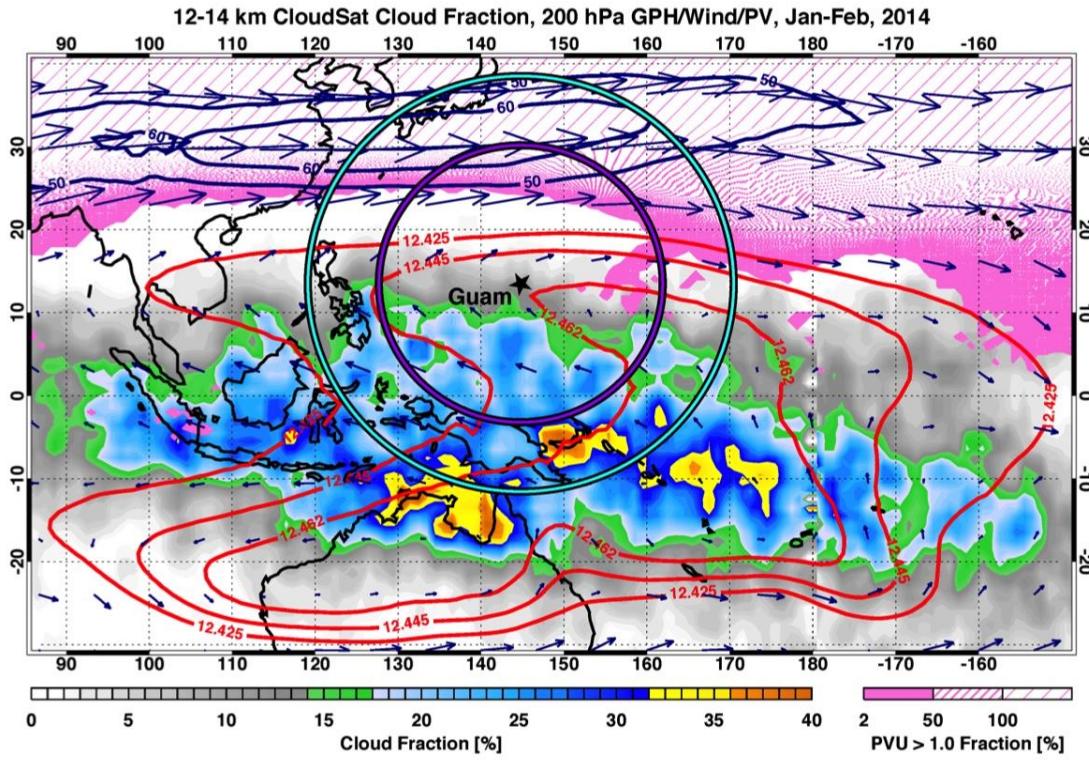
946 **Figure 14.** (a) GV-ozonesonde coordinated flight during RF14, 22 February 2014 with
947 Manus Island ozonesonde launch. GV flight track is shown in orange on the map. (b) GV in
948 situ ozone, sampled during a dip from west of Manus Island from 45 Kft to 41 Kft, is shown
949 in magenta, while ozonesonde measurements of ozone (black), temperature (red) and
950 potential temperature (green) are also shown.

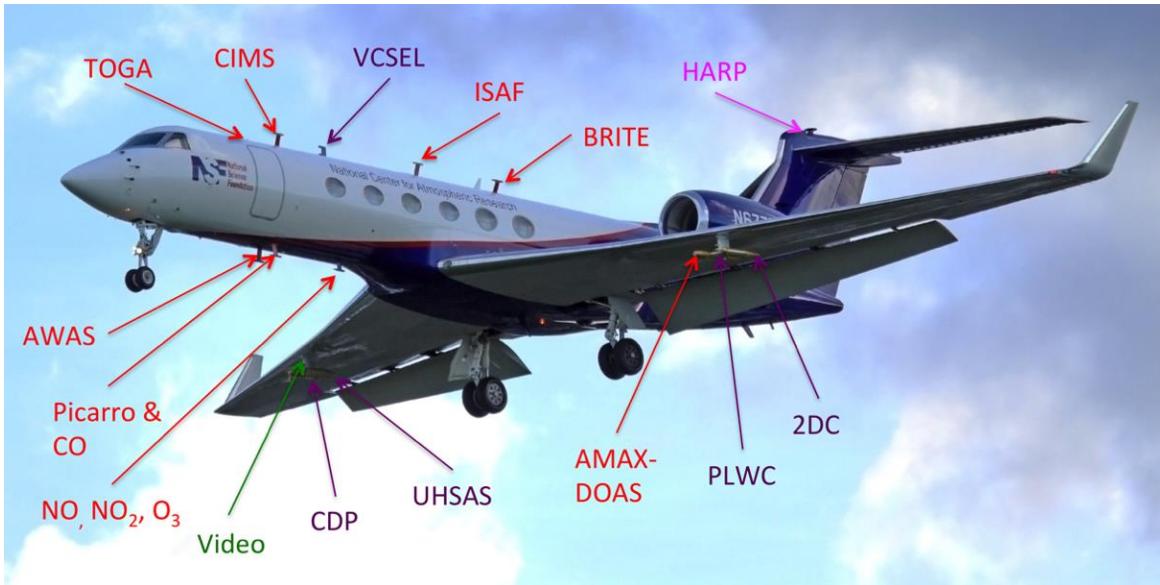
951



952

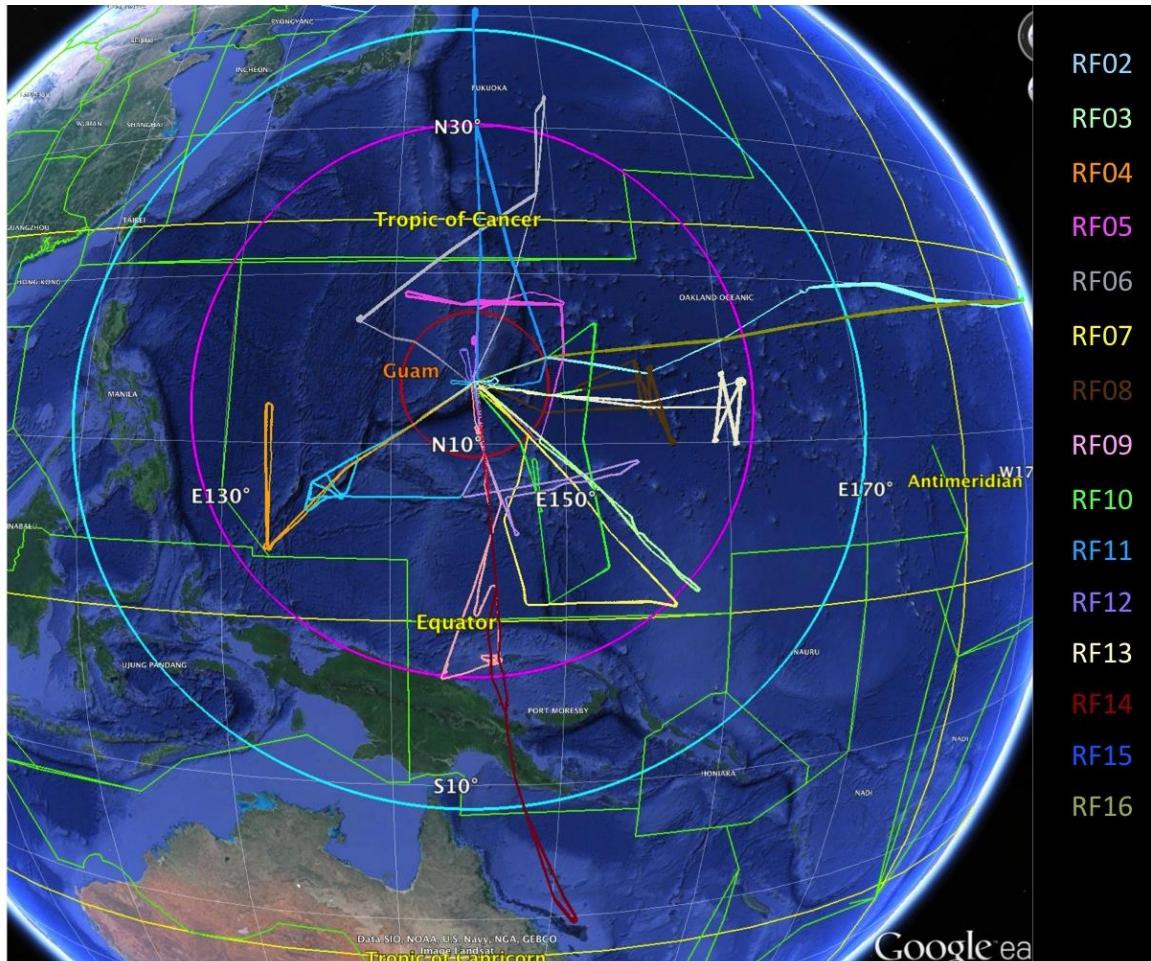
953 **Figure 1.** Thirty-year climatology of January-February sea surface temperature (SST),
 954 highlighting the TWP warm pool. The SST, shown by the color shaded contours, is from
 955 NOAA Optimum Interpolation data version 2 (Reynolds et al., 2002). The 30-year mean 193
 956 K temperature contour at the 100 hPa pressure level (black contour) is shown to indicate
 957 the coldest region of TTL. Also shown are locations of ozonesonde measurements (white
 958 circles) obtained from WOUDC (<http://woudc.org/home.php>), which include the SHADOZ
 959 stations.

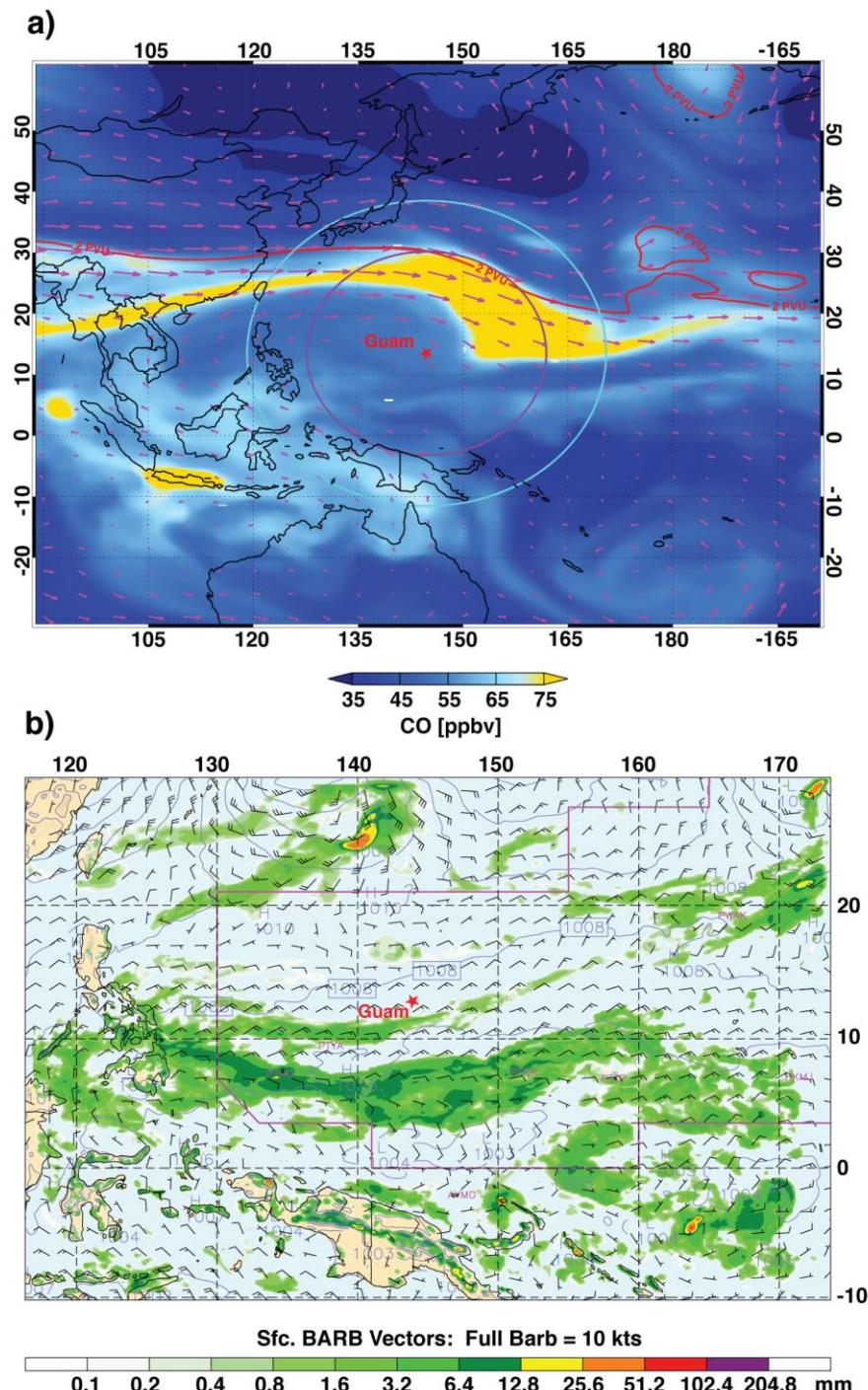

960


961

962

963 **Figure 2.** Concept of the coordinated campaigns. This schematic highlights the three
 964 research aircraft and the altitude ranges of their sampling in relation to the dynamical
 965 background. The key feature of the background is deep convection that nearly reaches the
 966 tropopause and which pumps marine boundary layer air into the TTL (~13-17 km). The
 967 level of full-sky net zero radiative heating, estimated to be near 14 km, is typically used to
 968 indicate the transition into mean upward motion driven by large-scale dynamical control
 969 (Corti et al., 2005).

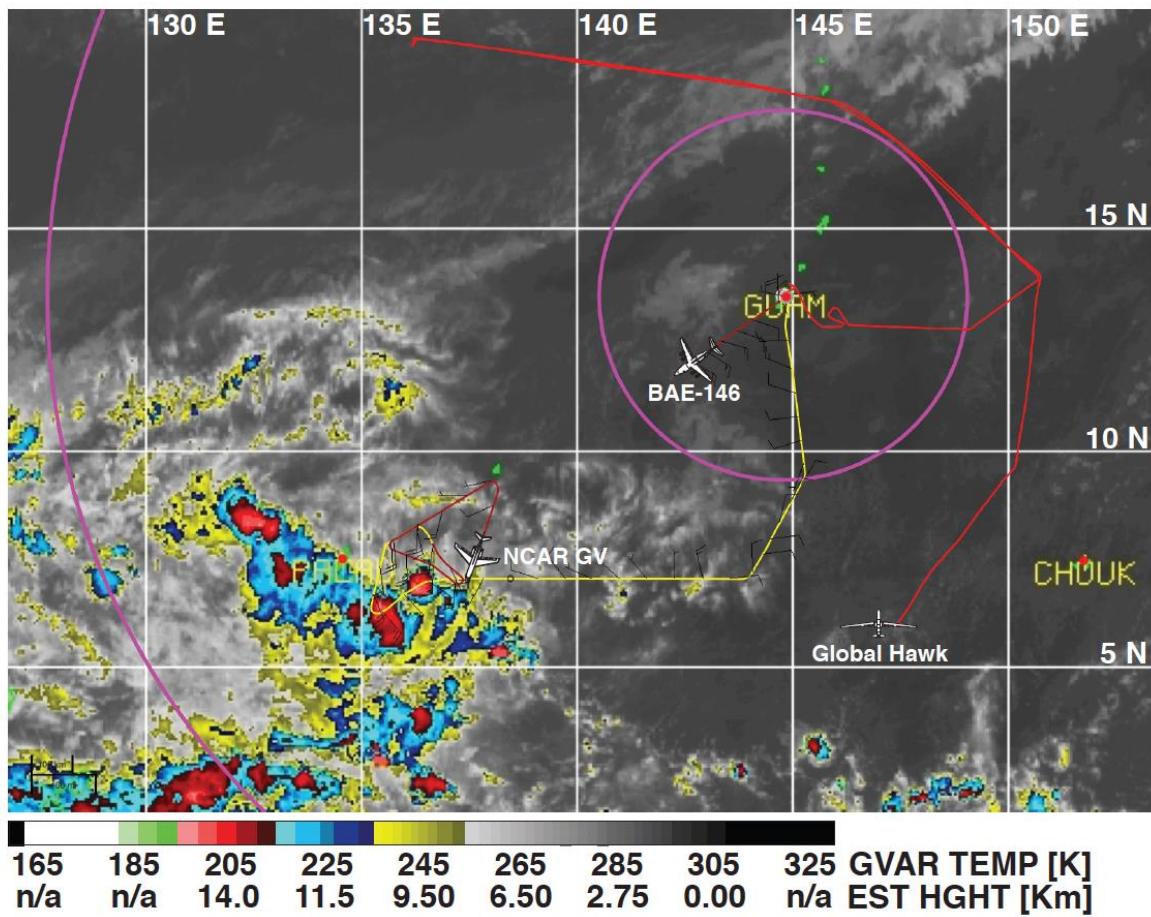




985

986 **Figure 4.** CONTRAST GV payload configuration. See Table 1 for instrument details. The
 987 cabin instruments are shown by their inlet locations (with exception of TOGA, its inlet was
 988 behind the fuselage in this takeoff photo). The colors are used to indicate the instrument
 989 type: chemistry (red), microphysics (purple), radiation (magenta), and the digital camera
 990 (green).
 991

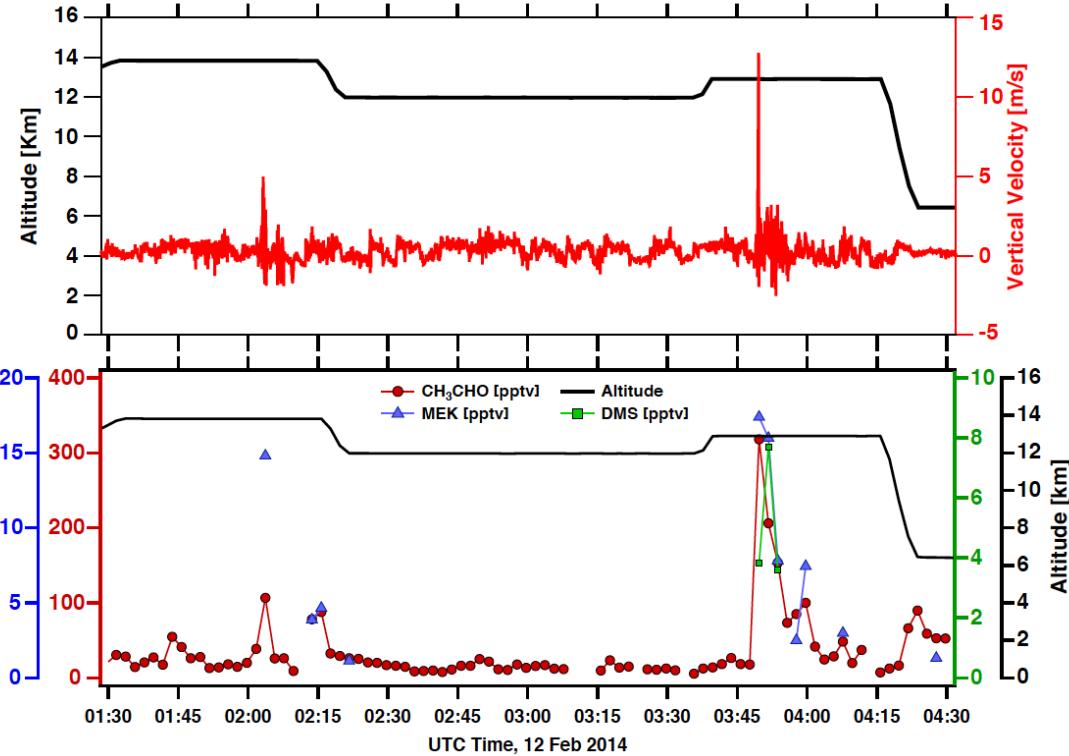
992


1004

1005 **Figure 6.** Examples of operational weather and chemical forecast plots for RF10 (flight day
 1006 8 February 2014). a) CAM-chem-SD 200 hPa CO (color shade) and wind field (pink arrows)
 1007 forecast that shows an intense CO plume moving into the Guam domain following the jet
 1008 stream. Also shown is the 2 PVU contour at 200 hPa, which marks the division of tropical
 1009 UT and extratropical LS. b) The WRF forecast of surface wind (wind barb vectors) and

1010 precipitating convection (shaded), which predicts an ITCZ near 7°N indicated by the
1011 surface wind convergence and the line of convection.

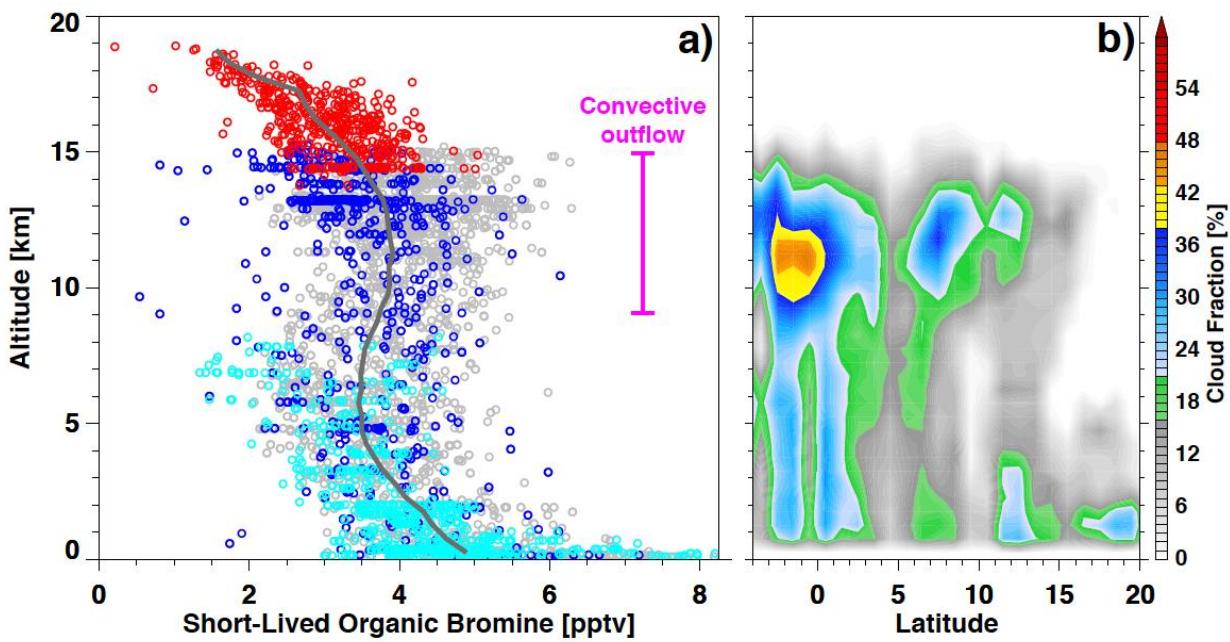
1012


1013

1014

1015 **Figure 7.** An example of a coordinated flight and the GV targeting active convection. This
1016 figure shows the real-time display from the Catalog Map on 13 Feb 2014 near 0400 UTC,
1017 around the time the GV sampled the region of convective outflow (see Figure 8). Active
1018 convection was widespread southwest of Guam, as revealed by the MTSAT IR (color
1019 shading) and visible (gray) channels. The yellow and red lines show flight tracks for each of
1020 the three aircraft (red indicates the track for the last hour).

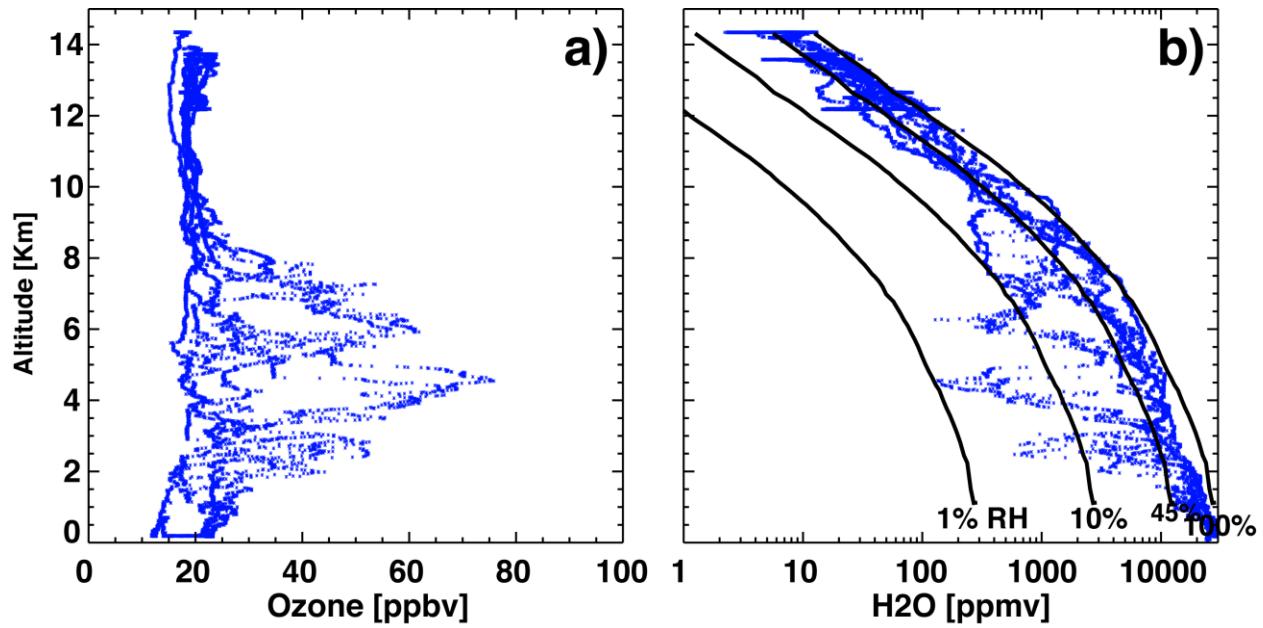
1021



1022

1023 **Figure 8.** Time series of flight altitudes, vertical velocity, and mixing ratios of selected
 1024 short-lived compounds during a 3-hour segment of RF11 (12 February 2014) when the GV
 1025 was targeting the outflow from active convection (see GV location and the region of active
 1026 convection during this time period in Fig. 7). The active convection regions are indicated by
 1027 increases in updraft velocity (~ 5 m/s and 13 m/s, respectively). For the aircraft location
 1028 and the convection, see Fig. 7, which shows satellite IR channel near 04:00 UTC. As
 1029 indicated by the track in Fig. 7, the GV repeatedly targeted the convective region at
 1030 different altitudes. The two time periods of successful sampling of fresh outflow
 1031 (associated with the updraft velocity 5 m/s and 13 m/s) the GV was at 43 Kft (~ 14 km)
 1032 and 40 Kft (~11 km), respectively. The location of the updraft was in the vicinity of the
 1033 aircraft position shown in Fig. 7. The tropopause was at ~17 km. The corresponding
 1034 enhancements of short-lived species in the UT are shown using TOGA observations of
 1035 acetaldehyde (CH_3CHO), methyl ethyl ketone (MEK; $\text{CH}_3\text{C(O)CH}_2\text{CH}_3$), and dimethyl sulfide
 1036 (DMS; CH_3SCH_3). DMS and MEK are below the detection limit (1 pptv) for the majority of
 1037 the UT time segment with the exception of the updraft region, especially during 03:49 -
 1038 03:54 UTC.

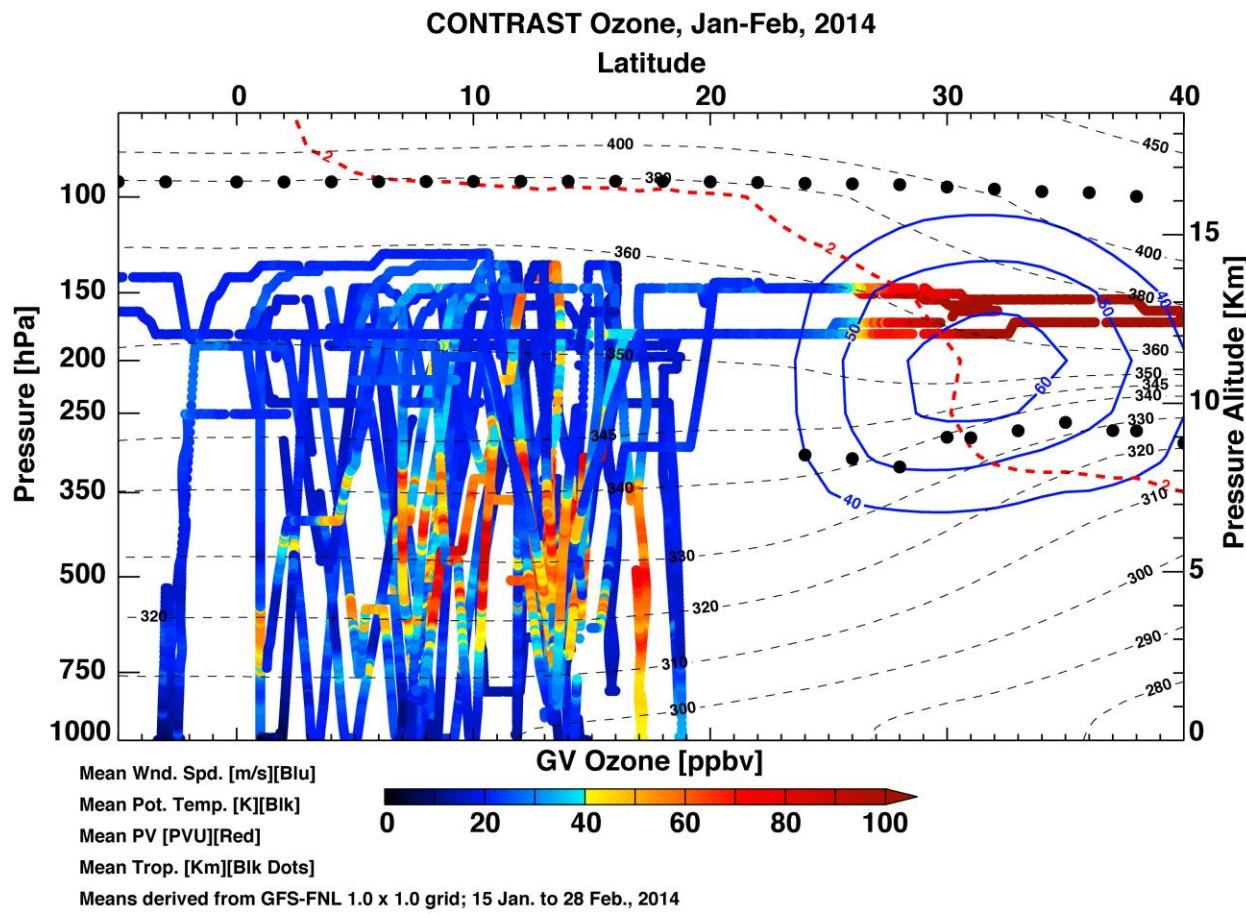
1039


1040

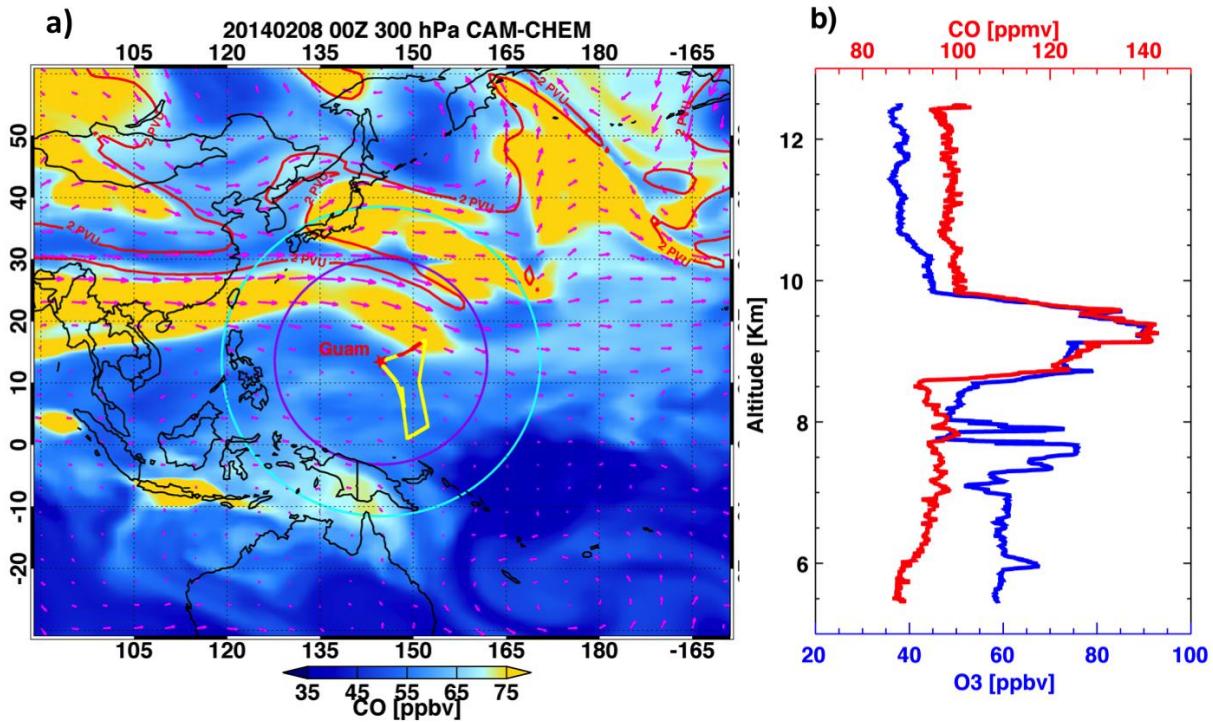
1041

1042 **Figure 9.** (a) Vertical distribution of the total bromine content from two short-lived
 1043 organic bromocarbons ($2 \times \text{CH}_2\text{Br}_2 + 3 \times \text{CHBr}_3$) from GV TOGA (gray)
 1044 and whole air samplers on all three aircraft (Cyan: BAe146, Blue: GV, Red: Global Hawk). The gray line
 1045 represents the median profile derived using all four data sets. (b) Latitude-height cross-
 1046 section of the mean cloud fraction of the region (140° and 150° E) during the period of the
 1047 CONTRAST campaign, calculated using CloudSat satellite data.

1048


1049

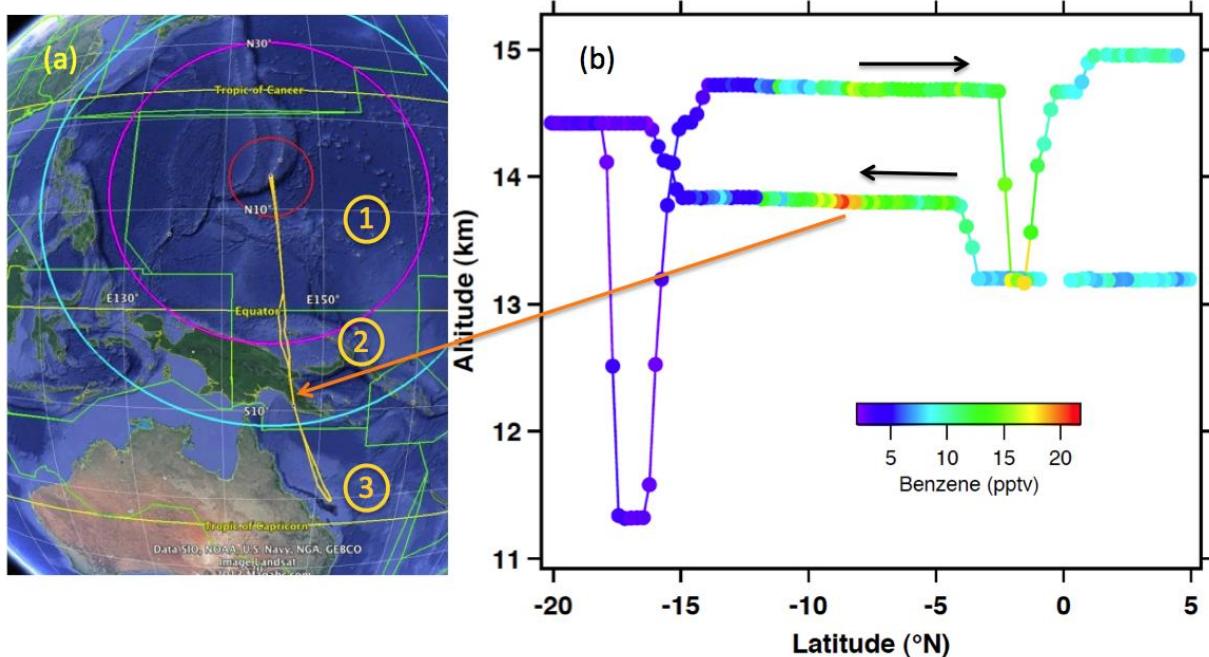
1050 **Figure 10.** Ozone (a) and water vapor (b) data from RF04, as an example of the ozone
 1051 profile structure, with layers of ozone enhancement that are coincident with layers of
 1052 water vapor reduction. Relative humidity (RH) levels corresponding to the measured
 1053 water vapor and temperature are also shown (black curves).


1054

1055

1056

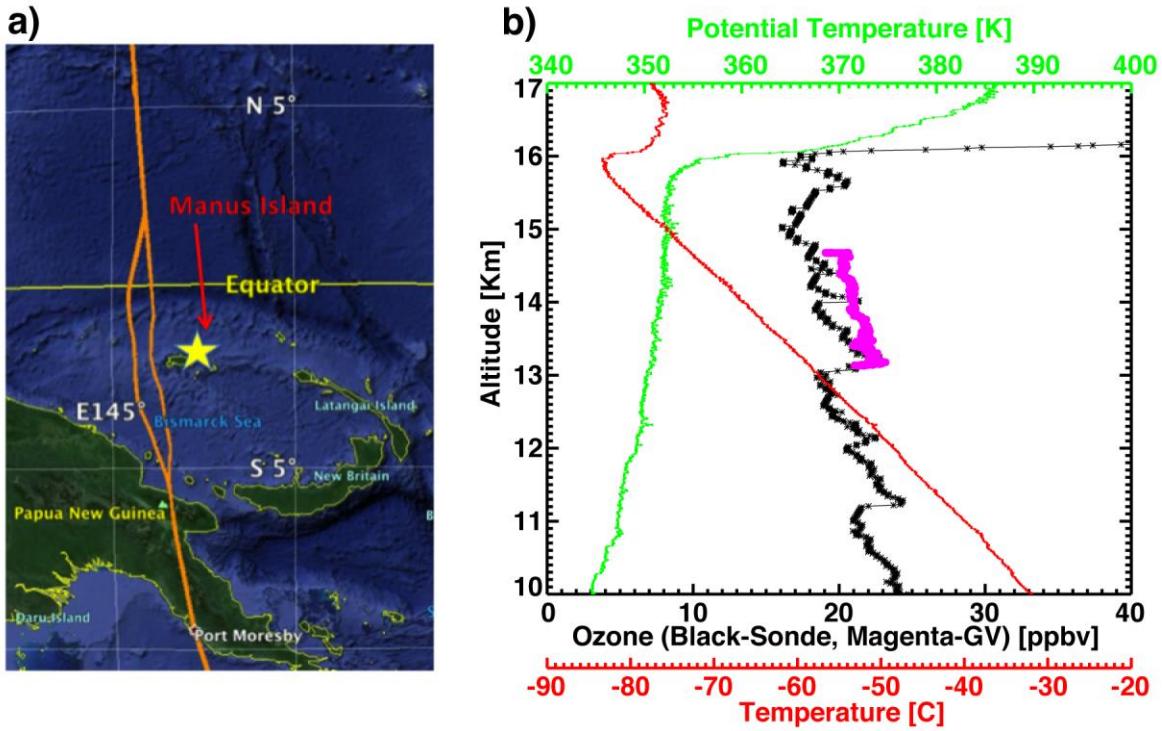
1060 **Figure 11.** The GV flight tracks for all flights colored by the O₃ mixing ratio. Also included
 1061 are mean large-scale dynamical structures of the campaign period and domain,
 1062 represented by the tropopause height (black dots), 2 PVU contour (red dash), subtropical
 1063 jet location (40, 50, 60 m/s horizontal wind, blue contour) and mean isentropes, all given in
 1064 sectional zonal mean for 130°-160° E longitude range.
 1065


1066

1067 **Figure 12.** (a) CAM-chem-SD model simulation of CO at the 300 hPa level as the
 1068 aircraft flight track (yellow) and (b) the GV measurements of CO and O₃ in the “CO river”
 1069 during RF10 on 8 February 2014. The portion of the flight track corresponding to the in
 1070 situ profile shown in (b) is marked in red on the map (a). The maximum CO enhancement is
 1071 shown to be ~ 8.5 km altitude (~ 300hPa pressure level).

1072

1073


1074

1075

1076 **Figure 13.** Chemical gradients at the TTL level shown by TOGA Benzene data from RF14
1077 flight on 22 February 2014. (a) The flight track shows the large latitude range ($\sim 15^{\circ}$ N –
1078 20° S) sampled. The flight was conducted in three FIRs: 1) Oakland Oceanic (USA), 2)
1079 Port Moresby (PNG) and 3) Brisbane (AUS). (b) Benzene mixing ratio from TOGA highlights the
1080 strong contrast of air over PNG ($\sim 8^{\circ}$ S) and the Coral Sea (south of 10° S). The black arrows
1081 above the tracks indicate the outbound/inbound flight directions.

1082

1083

1084 **Figure 14.** (a) GV-ozonesonde coordinated flight during RF14, 22 February 2014 with
1085 Manus Island ozonesonde launch. GV flight track is shown in orange on the map. (b) GV in
1086 situ ozone, sampled during a dip from west of Manus Island from 45 Kft to 41 Kft, is shown
1087 in magenta, while ozonesonde measurements of ozone (black), temperature (red) and
1088 potential temperature (green) are also shown.

1089

1090

1091

Table 1. Payload Summary

Instruments	Measurements	Investigater
Chemistry		
NO_x	NO, NO ₂	Weinheimer/NCAR ACD
Fast Ozone	O ₃	Weinheimer/NCAR ACD
VUV Carbon Monoxide	CO	Campos/NCAR ACD
Picarro	CO ₂ , CH ₄	Flocke/NCAR ACD
TOGA	NMHCs, OVOCs	Apel/NCAR ACD & Riemer /U. Miami
GT-CIMS	BrO, BrCl, HOBr, ClO	Huey/GIT
AMAX	BrO, IO, H ₂ CO (remote)	Volkamer/CU
HAIS Advanced Whole Air Sampler (AWAS)	Trace gases	Atlas/U.Miami
In Situ Airborne Formaldehyde (ISAF)	H ₂ CO	Hanisco/ NASA GSFC
Inorganic Br	Br* (Σ BrO + Br)	Atlas/U.Miami & Flocke/ACD
Radiation		
HARP	Spectral Actinic Flux	Hall /NCAR ACD
State parameters		
State Parameters	Lat/Lon, P, T, 3D wind	Jensen/NCAR RAF
RAF Digital Video	Fwd view	Jensen/NCAR RAF
Microphysics		
CDP Cloud Probe	2 - 50 um, water droplets, ice crystals	Jensen/NCAR RAF
2D-C Precipitation Probe	25-1600 um, ice, water	Jensen/NCAR RAF
UHSAS Aerosol Probe	0.075 - 1 um, aerosols	Jensen/NCAR RAF
WCN CN Counter	0.01 - 3 um, aerosols	Jensen/NCAR RAF
VCSEL Laser Hygrometer	water vapor	Jensen/NCAR RAF

1092

1093

Table 2. Research Flight Summary

Flight	Date	Flight Type, Scenario #	Flight Region
RF01	11-Jan-2014	Research transit, 1	Colorado to Hawaii
RF02	13-Jan-2014	Research transit, 1	Hawaii to Guam
RF03	17-Jan-2014	Domain survey, 1	Guam to SE (Chuuk)
RF04	19-Jan-2014	Domain survey, 1	Guam to SW (Palau)
RF05	22-Jan-2014	Convective outflow, 2	North of Guam
RF06	24-Jan-2014	Jet crossing/pre-post frontal contrast, 4, 5	North and Northwest of Guam, entering Fukuoka FIR (JPN)
RF07	29-Jan-2014	SH convective outflow survey, 1, 4	Guam to equatorial region
RF08	1-Feb-2014	Photochemical evolution - sunset, 3, 7	Guam to East (the stagnation point in the anticyclone)
RF09	4-Feb-2014	Equatorial crossing and Manus ozonesonde, 2, 6	Guam to Port Moresby FIR (PNG)
RF10	8-Feb-2014	Subtropical jet pollution and ITCZ survey, 2,5	Guam to near equator crossing ITCZ near 6°N
RF11	12-Feb-2014	Convective outflow and coordinate flight, 2, 6, 7	Guam to south and southwest
RF12	17-Feb-2014	Convective outflow and coordinated flight, 2, 6, 7	Guam to south and southeast
RF13	19-Feb-2014	Photochemical evolution - sunrise, 3	Guam to East (the stagnation point of the anticyclone)
RF14	22-Feb-2014	Equator crossing, SH TTL survey, and Manus ozonesonde, 1, 2, 6	Guam to Port Moresby FIR (PNG) & Brisbane FIR (AUS)
RF15	24-Feb-2014	Jet crossing and lower stratosphere survey, 4	Guam to 40°N Fukuoka FIR (JPN)
RF16	28-Feb-2014	Transit flight with limited research, 1	Guam to Honolulu

1094

1095

1096