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means that the energy barrier to charge injection
from the gold contacts must be smaller than the
0.7 eV EF-EHOMO offset measured by ultraviolet
photoelectron spectroscopy (UPS) (20). Indeed,
the offset will be reduced considerably by both
the image potential associated with the metal
contacts and the polaron shift (16), both of which
are not accounted for in UPSmeasurements (37).

The negative slope in the high-voltage regime
III′ of Fig. 4D suggests that field emission may
also occur in OPI 10 (similar results were
obtained for OPI 6 to 9). From the slope in
regime III′, we calculated the emission barrier
height (fFE) to be in the range of 0.3 to 0.5 eV,
assuming carrier effective mass ratios in the
range 0.1 to 1.0, which are typical for molecular
junctions (24). We also considered other possible
transport mechanisms in the metal/wire/metal
junction, such as Schottky emission at the
contact, Poole-Frenkel emission in the wires,
and space-charge-limited transport in the pres-
ence of traps (38, 39). However, we did not
obtain reasonable values for extracted physical
parameters with these other mechanisms (20).
The estimated emission barrier heights for the
other longOPI wires are also listed in Table 1 and
table S1. Regime II′ is a transitional regime
between ohmic conduction and field emission for
OPI 10, and it may correspond to space-charge-
limited conduction (SCLC), based on the slope of
2.6 in the log I versus log V plot (Fig. 4B) and the
slope of –3.5 in the log I versus log L plot at 0.7 V
(inset in Fig. 4B) (39, 40). Further work is
necessary to conclusively establish the transport
mechanism in this regime.
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The Impact of Stratospheric
Ozone Recovery on the Southern
Hemisphere Westerly Jet
S.-W. Son,1* L. M. Polvani,1,2 D. W. Waugh,3 H. Akiyoshi,4 R. Garcia,5 D. Kinnison,5 S. Pawson,6
E. Rozanov,7,8 T. G. Shepherd,9 K. Shibata10

In the past several decades, the tropospheric westerly winds in the Southern Hemisphere have
been observed to accelerate on the poleward side of the surface wind maximum. This has
been attributed to the combined anthropogenic effects of increasing greenhouse gases and
decreasing stratospheric ozone and is predicted to continue by the Intergovernmental Panel on
Climate Change/Fourth Assessment Report (IPCC/AR4) models. In this paper, the predictions of
the Chemistry-Climate Model Validation (CCMVal) models are examined: Unlike the AR4 models,
the CCMVal models have a fully interactive stratospheric chemistry. Owing to the expected
disappearance of the ozone hole in the first half of the 21st century, the CCMVal models predict
that the tropospheric westerlies in Southern Hemisphere summer will be decelerated, on the
poleward side, in contrast with the prediction of most IPCC/AR4 models.

Recent observations (1–4) indicate that the
westerly jet in the Southern Hemisphere
(SH) troposphere is accelerating on the

poleward side; this is usually described as a posi-
tive trend of the Southern annular mode index
(1). This acceleration has important consequences

for SH climate: It directly affects the surface
temperatures (2), the extent of sea ice (2), the
variability of storm tracks (5), the location of arid
regions (6), the strength of the wind-driven
oceanic circulation (7), and the exchange of CO2

and heat between atmosphere and ocean (7, 8).

Understanding and predicting changes in the SH
westerlies are therefore of the utmost importance.

Climate models have shown that the recent
wind changes likely result from an increase in
greenhouse gases and the depletion of strato-
spheric ozone (9–11), but the relative contribution
of these two effects remains an open question,
especially for the 21st century when stratospheric
ozone is expected to recover as a result of the im-
plementation of the Montreal Protocol (12). The
multimodel mean of the IPCC/AR4 atmosphere-
ocean–coupled model integrations indicates that
the acceleration of the SH westerlies on the
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poleward side will continue in the 21st century
(5, 13, 14), albeit at a weaker rate (13). However,
because ozone recovery is not uniformly speci-
fied among the AR4 models, it is unclear at
present what role, if any, ozone recovery plays in
the acceleration of the SH westerlies.

To explore this issue, we examine the predic-
tions of the CCMVal activity of the “stratospheric
processes and their role in climate” (SPARC)
project (15). These models faithfully reproduce
past climate change in the SH (see the supporting
online material). In this study, we analyze the
output of all seven CCMVal models, which per-
formed integrations up to the year 2050 (16). In
contrast to AR4 models described below, the
CCMVal models have a high vertical resolution
in the stratosphere, a model top located above the
stratopause (~ 50 km), and fully interactive strato-
spheric chemistry. All CCMValmodels are forced
with the IPCCA1B scenario for greenhouse gases
and Ab scenario for halogen concentrations. The
sea surface temperature is prescribed from either
the coupled AR4 model on which a given

CCMVal model is based or the UK Meteorolog-
ical Office Hadley Centre model output (15).

The CCMVal model integrations are con-
trasted with those of AR4 models forced by A1B
scenario greenhouse gases (17). Although the
two sets of model integrations are comparable in
the troposphere, they are substantially different in
the stratosphere. Most AR4 models have the
model top well below the stratopause (17, 18).
More importantly, time changes in stratospheric
ozone concentration are ignored by nearly half
the models.We examine the output of all 19 AR4
models, which is available at the IPCC/AR4 data
archive: Of these models, 10 prescribe strato-
spheric ozone recovery, and the other 9 do not
(19). The ozone recovery in the former group is
specified either as simple linear function of time
or from the output of two-dimensional models,
which are driven by halogen loading consist-
ent with the Montreal Protocol (17). The de-
tailed spatial and temporal structures of the
prescribed ozone recovery, however, have not
been documented.

Because stratospheric ozone is predicted to
increase approximately linearly from 2001 to
2050 in almost all CCMVal model integrations
(15, 20), we compute linear trends of all quan-
tities using monthly or seasonally averaged zonal
fields, from 2001 to 2050. Trends are first calcu-
lated for the individual model realizations with a
least-square fit and then averaged among all
available ensemble members for the samemodel.
The multimodel mean trend in the spatial domain
is produced by interpolating each model’s trend
linearly to the latitudes and log-linearly to the
pressure levels.

We start by considering how ozone recovery
affects the temperature in the upper troposphere
and lower stratosphere. Figure 1A shows the SH
polar-cap ozone trend predicted by multimodel
mean of CCMVal models. The strongest ozone
recovery is found at 50 hPa in October and at
lower altitudes in the following months. This pat-
tern is largely reminiscent of ozone depletion in
the recent past (21, 22), except for the reversal in
sign and slightly higher location of maximum

A B C

D EFig. 1. Trends in zonaly and monthly ozone
(O3) and temperature (T ) over the polar cap,
integrated poleward of 70°S. The multimodel
mean trends between 2001 and 2050 are
shown for ozone as simulated by CCMVal
models [parts per million by volume (ppmv)
decade−1] (A), temperature as simulated by
CCMVal models (K decade−1) (B), temperature
as simulated by AR4 models (K decade−1) (C),
temperature as simulated by AR4 models with
prescribed ozone recovery (D), and temper-
ature as simulated by AR4 models with no
ozone recovery (E). Values that are greater
than one SD are shaded.
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trend. Associated with such ozone recovery, lower-
stratospheric temperatures over the polar cap
increase substantially, as seen in Fig. 1B. This
warming reaches down into the upper troposphere,
as has been noted in stratospheric-resolving
general circulation model experiments with pre-
scribed ozone depletion (9) and chemistry-climate
model integrations for the recent past (22).

Figure 1C shows corresponding polar-cap
temperature trends, as predicted by all AR4
models. This multimodel mean trend shows a
much weaker warming and is not statistically
significant in the upper troposphere and lower
stratosphere. This is due to the way in which
ozone is prescribed in the AR4 models. In nearly
half of those models, there is no ozone recovery,
and this results in the absence of warming in the
lower stratosphere for those models (Fig. 1E).
Even when ozone recovery is prescribed (Fig.
1D), the AR4 models produce less robust polar-
cap warming than the CCMVal models because
of the large intermodel difference in temperature
trends.

The ozone-induced temperature change in the
lower-stratospheric polar cap has a substantial im-
pact on the pressure and wind fields in the tropo-
sphere below (2, 10, 11). Figure 2A shows the
multimodel mean trend in December-to-February
mean SH westerlies simulated by CCMVal mod-
els. The tropospheric westerlies are found to be
decelerated on the poleward side of the jet, imply-
ing a negative trend in Southern annular mode
index in the future. This result is opposite to the
one predicted by the multimodel mean of AR4
models, which shows acceleration on the pole-
ward side of the jet (Fig. 2B). The importance of
ozone-related warming is even clearer if one
compares AR4 models with and without a
prescribed ozone recovery. As seen in Fig. 2C,
the multimodel mean trend for the subset of AR4
integrations with ozone recovery exhibits features
qualitatively similar to those in CCMVal models,
although the dipolar pattern is weaker and does
not reach to the surface.When the ozone recovery
is neglected (Fig. 2D), theAR4models predict the
opposite trend in the extratropics. This result
indicates that the effect of ozone-induced
warming overwhelms that of greenhouse gas–
induced cooling in the lower-stratospheric polar
cap and plays an important role in the acceleration
of the tropospheric westerlies during the SH
summer. Note that, owing to its strong seasonality
(Fig. 1A), ozone recovery plays a minimal role
during other seasons (22).

The impact of stratospheric ozone recovery
on the SH westerlies is further clarified in Fig. 3,
where the relationships among trends in lower-
stratospheric polar-cap ozone and temperature, as
well as lower-tropospheric westerlies, are shown
for all model integrations. For the westerlies, trends
are quantified byD[u]: the difference in the 850-hPa
zonal wind at ±10° from the latitude of maximum
wind. This is very similar to computing the South-
ern annular mode index (1) but is much simpler in
practice.

First, note that the polar-cap warming in the
lower stratosphere is linearly correlatedwith ozone
recovery in the CCMVal models (Fig. 3A). A
linear correlation is also found between trends in
polar-cap temperature and in D[u] (Fig. 3B). This
suggests that stronger polar-cap warming, asso-
ciated with ozone recovery, results in a larger neg-
ative D[u] trend. This is equivalent to the larger
negative trend of the Southern annular mode
index (i.e., an equatorward intensification of
the jet).

Second, consider the corresponding plot for
AR4 models (Fig. 3C). Although essentially no
relationship is found between trends in polar-cap
temperature and in D[u] for those AR4 models
with no ozone recovery (open circles), a signif-
icant negative correlation appears for those AR4
models with prescribed ozone recovery (filled
circles). Moreover, the negative correlation for
the latter AR4 models (dashed gray line) is simi-
lar to the one obtained from the CCMVal models
(solid gray line). This shows that the response of
tropospheric westerlies to polar-cap temperature
trends is very robust, because it is found in two
sets of substantially different climate models.

Third, observe that most CCMVal models
show negativeD[u] trends (Fig. 3B), whereas most
AR4 models show positive D[u] trends (Fig. 3C),
even when ozone recovery is prescribed. This
difference is consistent with weaker polar-cap
warming in AR4 models as compared with
CCMVal models. Most AR4 models predict a
polar-cap temperature trend smaller than ~ 1 K
decade−1, and such values result in a positive D[u]
trend, even for the CCMVal models. At present, it
is unclear why AR4 models underestimate the
low-stratospheric polar-cap warming. On the one
hand, it could result from an incorrect specifica-
tion of the ozone recovery either in amplitude or
spatial distribution (23); however, this cannot be
ascertained, because the precise ozone fields used
in each AR4 model have not been archived. On
the other hand, it might result from the poorly
resolved stratospheric circulation, the lack of ver-
tical resolution, or artificial damping near the low
model tops in AR4 models. Further work is
needed to clarify this underestimate.

The detailed mechanisms through which
stratospheric ozone affects the tropospheric west-
erly jet remain unclear at present. Several hypothe-

A B

C D

Fig. 2. Trends in December-to-February (DJF) zonal-mean zonal wind. The multimodel mean trends
between 2001 and 2050 are shown for the CCMVal models (A), the AR4 models (B), the AR4 models
with prescribed ozone recovery (C), and the AR4 models with no ozone recovery (D). Shading and contour
intervals are 0.05 ms−1 decade−1. Deceleration and acceleration are indicated with blue and red colors,
respectively, and trends weaker than 0.05 ms−1 decade−1 are omitted. Superimposed black solid lines are
DJF zonal-mean zonal wind averaged from 2001 to 2010, with a contour interval of 10 ms−1, starting at
10 ms−1. EQ, equator.

13 JUNE 2008 VOL 320 SCIENCE www.sciencemag.org1488

REPORTS

 o
n 

S
ep

te
m

be
r 

1,
 2

00
8 

w
w

w
.s

ci
en

ce
m

ag
.o

rg
D

ow
nl

oa
de

d 
fr

om
 

http://www.sciencemag.org


ses have been proposed (4, 24–27), but none have
been validated or falsified. Nonetheless, our analy-
ses suggest that stratospheric processes, and ozone
recovery in particular, may be able to affect SH
climate inmajor ways and thus should be included
in predictions of SH climate in the 21st century.
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Fig. 3. Relationships among SH polar-cap ozone trend at 100
hPa, polar-cap temperature trend at 100 hPa, and extra-
tropical zonal wind trend at 850 hPa: for ozone and tem-
perature trends as simulated by CCMVal models (A), for zonal
wind and temperature trends as simulated by CCMVal mod-
els (B), and for zonal wind and temperature trends as simu-
lated by AR4 models (C). Here, ozone and temperature trends
are calculated for September-to-December and November-to-
January mean quantities, respectively. The averaging months
are chosen to reflect the largest trends at 100 hPa, as seen in
Fig. 1. The zonal wind trends at 850 hPa are quantified by
D[u]: the difference in DJF-averaged zonal wind at ±10°
from the latitude of maximum wind. Negative values denote
the deceleration (acceleration) of westerlies on the poleward
(equatorward) side of the maximum wind. The filled and open
circles in (C) correspond to the AR4 models with and without
prescribed ozone recovery. Solid and dashed gray lines in (B)
and (C) indicate linear fit for CCMVal models and AR4 models
with prescribed ozone recovery, respectively. Numbers within
parentheses in the key denote the number of ensemble mem-
bers used for each model. dec., decade.
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