Effects of aerosols on tropospheric oxidants: A global model study

Xuexi Tie, Guy Brasseur, ${ }^{1}$ and Louisa Emmons
National Center for Atmospheric Research, Boulder, Colorado, USA
Larry Horowitz
Geophysical Fluid Dynamics Laboratory, Princeton University, Princeton, New Jersey, USA

Douglas Kinnison

National Center for Atmospheric Research, Boulder, Colorado, USA

Abstract

The global distributions of sulfate and soot particles in the atmosphere are calculated, and the effect of aerosol particles on tropospheric oxidants is studied using a global chemical/transport/ aerosol model. The model is developed in the framework of the National Center for Atmospheric Research (NCAR) global three-dimensional chemical/transport model (Model for Ozone and Related Chemical Tracers (MOZART)). In addition to the gas-phase photochemistry implemented in the MOZART model, the present study also accounts for the formation of sulfate and black carbon aerosols as well as for heterogeneous reactions on particles. The simulated global sulfate aerosol distributions and seasonal variation are compared with observations. The seasonal variation of sulfate aerosols is in agreement with measurements, except in the Arctic region. The calculated vertical profiles of sulfate aerosol agree well with the observations over North America. In the case of black carbon the calculated surface distribution is in fair agreement with observations. The effects of aerosol formation and heterogeneous reactions on the surface of sulfate aerosols are studied. The model calculations show the following: (1) The concentration of $\mathrm{H}_{2} \mathrm{O}_{2}$ is reduced when sulfate aerosols are formed due to the reaction of $\mathrm{SO}_{2}+$ $\mathrm{H}_{2} \mathrm{O}_{2}$ in cloud droplets. The gas-phase reaction $\mathrm{SO}_{2}+\mathrm{OH}$ converts OH to HO_{2}, but the reduction of OH and enhancement of HO_{2} are insignificant ($<3 \%$). (2) The heterogeneous reaction of HO_{2} on the surface of sulfate aerosols produces up to 10% reduction of hydroperoxyl radical $\left(\mathrm{HO}_{2}\right)$ with an uptake coefficient of 0.2 . However, this uptake coefficient could be overestimated, and the results should be regard as an upper limit estimation. (3) The $\mathrm{N}_{2} \mathrm{O}_{5}$ reaction on the surface of sulfate aerosols leads to an 80% reduction of NO_{x} at middle to high latitudes during winter. Because ozone production efficiency is low in winter, ozone decreases by only 10% as a result of this reaction. However, during summer the $\mathrm{N}_{2} \mathrm{O}_{5}$ reaction reduces NO_{x} by 15% and O_{3} by $8-10 \%$ at middle to high latitudes. (4) The heterogeneous reaction of $\mathrm{CH}_{2} \mathrm{O}$ on sulfate aerosols with an upper limit uptake coefficient $(\gamma=0.01)$ leads to an 80 to 90% decrease in $\mathrm{CH}_{2} \mathrm{O}$ and 8 to 10% reduction of HO_{2} at middle to high latitudes during winter. Many uncertainties remain in our understanding of heterogeneous chemical processes and in the estimate of kinetic parameters. This model study should therefore be regarded as exploratory and subject to further improvements before final conclusions can be made.

1. Introduction

Tropospheric aerosols are suspended particles, including condensed water, sulfate droplets, sea-salt particles, black carbon/soot, silicates, and organic aerosols. There has been increased recognition of the importance of aerosols in climate change and climate prediction. Aerosols affect the climate both

[^0]Copyright 2001 by the American Geophysical Union.
Paper number 2001 JD900206.
0148-0227/01/2001JD900206\$09.00
directly, through scattering and absorption of incoming solar radiation, and indirectly, through their ability to act as cloud condensation nuclei (CCN). Studies [Charlson et al., 1991; Kiehl and Briegleb, 1993; Penner et al., 1994] suggest that the globally averaged effects of aerosols may be similar in magnitude but opposite in sign to the projected warming attributed to greenhouse gas accumulation. Because aerosols are far from being uniformly distributed in the atmosphere, their radiative forcing varies considerably in space and can exceed substantially the effect of well-mixed greenhouse gases in regions of intense biomass burning and fossil fuel consumption.

Aerosol particles also have strong interactions with oxidants in the atmosphere. Multiphase and heterogeneous reactions on and
within aerosols have the potential to play a major role in determining the composition of the gaseous atmosphere. The interaction between aerosols and gas composition is a relatively new research area. The studies of the effects of Polar Stratospheric Clouds (PSCs) and sulfate aerosols on chemical composition in the lower stratosphere have shown that heterogeneous reactions on the surface of these particles play an important role in determining ozone concentrations in the stratosphere [Solomon et al., 1986; Hofmann and Solomon, 1989; Brasseur et al., 1990; Pitari and Rizi, 1993; Hofmann et al., 1994; Tie et al., 1996]. However, it is only recently that the effects of aerosols on tropospheric chemistry have been stressed [see, e.g., Lelieveld and Crutzen, 1990; Dentener and Crutzen, 1993; Kolb et al., 1995; Dentener and Crutzen, 1996; Hauglustaine et al., 1996; Andreae and Crutzen, 1997; Ravishankara, 1997; Saylor, 1997; Aumont, 1999; Jacob, 2000; Thomas et al., 2001], and many uncertainties remain and will need to be addressed in the future.

In this paper, we develop a coupled chemical/aerosol model to address the interaction between sulfate and black carbon aerosols and tropospheric composition. Several global sulfate and black carbon aerosol models have been developed in the past [Benkovitz. et al., 1996; Chin et al., 1996; Cooke and Wilson, 1996; Feichter et al., 1996; Liousse et al., 1996; Kasibhatla et al., 1997; Barth et al., 2000] in an off-line mode, with gas-phase chemical species concentrations provided as input data and the impact of aerosol particles on gas-phase compounds ignored. In this paper, we will present an interactive model which has several advantages: (1) The formation of sulfate aerosol particles depends strongly upon the diurnal variations of radical OH and NO_{3}, which are generally not simulated by off-line models; (2) the perturbations of gasphase species resulting from the formation of aerosols are fully accounted for; (3) the feedbacks on the aerosol formation from changing concentrations of gas-phase compounds (resulting from heterogeneous reactions) are taken into account.

This study is not intended to be comprehensive and account for all processes affecting aerosol/gas-phase interactions. For example, suggested by Dentener et al. [1996], the reaction of SO_{2} on calcium-rich mineral dust is likely to play an important role. The interactions of $\mathrm{N}_{2} \mathrm{O}_{5}, \mathrm{O}_{3}$, and HO_{2} with mineral dust are affecting to affect the photochemical oxidants, causing ozone decreases of perhaps 10% in and nearby the dust source areas. However, mineral dust is not included in the present version of the MOZART model, and the heterogeneous reactions on mineral dust will not be discussed in the present study. Furthermore, the model does not account for the impact of aerosol radiative effects on the photochemistry. For example, the presence of aerosols affect the photolysis rate of chemical species [He and Carmichael, 1999; Liao et al., 1999]. This process, which could lead to changes in the concentration of tropospheric oxidants, is not considered in the present study.

The paper is divided into several sections. Section 2 provides a brief description of the chemical/aerosol/transport model that will be used in the study, Section 3 shows the simulation of particle distributions and comparison with observations, and Section 4 discusses the effects of heterogeneous reactions on the tropospheric composition.

2. Description of the Model

The model providing the mass density of sulfate and black carbon particles is developed in the framework of the National Center for Atmospheric Research (NCAR) global threedimensional chemical/transport model (Model for Ozone and

Related Chemical Tracers (MOZART), version 1). MOZART 1 [Brasseur et al., 1998] is a comprehensive tropospheric chemical/transport model, calculating the global distribution of 56 gas-phase chemical species (see Table 1 of Brasseur et al. [1998]). In the present study the concentrations of $\mathrm{OH}, \mathrm{H}_{2} \mathrm{O}_{2}$, NO_{3}, and O_{3} are used to calculate the conversion of gas-phase sulfur species into sulfate aerosols. In addition, $\mathrm{SO}_{2}, \mathrm{SO}_{4}{ }^{=}$, dimethyl sulfide (DMS), and NH3 are added to the gas-phase chemical scheme used in MOZART. The model is configured with a T42 $\left(2.8^{\circ} \times 2.8^{\circ}\right)$ horizontal resolution and 25 hybrid vertical levels ranging from the surface to 4 mbar. Meteorological information (i.e., winds, temperature, etc.) is provided by the NCAR Community Climate Model (CCM-2) every 3 hours based on precalculated results (off-line). The model time step for chemistry and transport is 20 minutes. Within a 3 -hour period the meteorological variables are interpolated linearly with time. The chemical species are transported by advective [Rasch and Williamson, 1991], diffusive [Holtslag and Boville, 1993], and convective [Hack et al., 1994] processes. Details on the treatment of gas-phase chemical mechanisms and transport processes are provided by Brasseur et al. [1998]. The distribution of CH4, nonmethane hydrocarbons (NMHCs), and CO calculated by MOZAR1 are generally consistent with observations [Hauglustaine et al., 1998]. The seasonal cycle of ozone is generally well simulated in comparison with ozonesondes, although MOZART 1 tends to underestimate O_{3} concentrations at middle and high latitudes of the Northern Hemisphere, especially in the upper troposphere due to the ozone flux across the tropopause being underestimated in the model. The nitric acid $\left(\mathrm{HNO}_{3}\right)$ mixing ratio and the $\mathrm{HNO}_{3} / \mathrm{NO}_{\mathrm{x}}$ concentration ratio are generally overestimated, especially over the Pacific Ocean and over North America.

2.1. Gas-Phase Sulfur and Sulfate Aerosols

The chemical scheme for gas-phase reactions implemented in MOZART 1 includes the oxidation of dimethyl sulfide (DMS) by OH and NO_{3} as well as the conversion of SO_{2} into sulfate by OH :

DMS $+\mathrm{OH} \rightarrow \mathrm{SO}_{2}+$ products,
$\mathrm{DMS}+\mathrm{OH} \rightarrow 0.75 \mathrm{SO}_{2}+0.25 \mathrm{MSA}$,
DMS $+\mathrm{NO}_{3} \rightarrow \mathrm{SO}_{2}+$ products,
$\mathrm{SO}_{2}+\mathrm{OH} \rightarrow \mathrm{SO}_{4}{ }^{=}+\mathrm{HO}_{2}$.
The corresponding reaction coefficients are listed in Table 1. The reactions (R1)-(R4) do not represent single reactions, but a sequence of reactions [Chin et al., 1996]. Unlike previous model studies [Benkovitz, et al., 1994; Chin et al., 1996; Feichter et al., 1996; Kasibhatla et al., 1997; Barth et al., 2000], our approach allows for chemical feedbacks between sulfate and the oxidants included in the model. In the following sections, we show that the formation of sulfate aerosols can significantly affect OH concentrations in the polluted troposphere.

Aqueous phase conversion of SO_{2} to $\mathrm{SO}_{4}=$ in cloud water is represented by the following reactions which become active in the grid cells of the model where clouds are present:
(R5) $\quad \mathrm{SO}_{2}(\mathrm{~g}) \Leftrightarrow \mathrm{SO}_{2}(\mathrm{aq})$,
(R6) $\quad \mathrm{O}_{3}(\mathrm{~g}) \Leftrightarrow \mathrm{O}_{3}(\mathrm{aq})$,
(R7)
(R8)
$\mathrm{H}_{2} \mathrm{O}_{2}(\mathrm{~g}) \Leftrightarrow \mathrm{H}_{2} \mathrm{O}_{2}(\mathrm{aq})$,
$\mathrm{SO}_{2}(\mathrm{aq}) \Leftrightarrow \mathrm{H}^{+}+\mathrm{HSO}_{3}^{-}$,
(R9) $\quad \mathrm{HSO}_{3} \Leftrightarrow \mathrm{SO}_{3}=+\mathrm{H}^{+}$,
(R10) $\quad \mathrm{S}(\mathrm{IV})+\mathrm{H}_{2} \mathrm{O}_{2}(\mathrm{aq}) \rightarrow \mathrm{SO}_{4}=+$ products,
(R11) $\quad \mathrm{S}(\mathrm{IV})+\mathrm{O}_{3}(\mathrm{aq}) \rightarrow \mathrm{SO}_{4}=+$ products,

Table 1. List of Gas-Phase Reactions, Gas-Aqueous Phase Equilibria, and Aqueous Phase Reaction Constants for Sulfate Aerosols ${ }^{a}$

Reactions	Coefficients	References
Gas Phase		
$\begin{array}{ll} 1 & \mathrm{DMS}+\mathrm{OH} \rightarrow \mathrm{SO}_{2}+\text { products } \\ 2 & \mathrm{DMS}+\mathrm{OH} \rightarrow 0.75 \mathrm{SO}_{2}+0.25 \mathrm{MSA} \end{array}$	$9.6 \times 10^{-12} \exp (-234 / \mathrm{T})$	1
	a $1 / \mathrm{a} 2$	
	$\mathrm{al}=1.7 \times 10^{-42} \exp (7810 / \mathrm{T})\left[\mathrm{O}_{2}\right]$	
	$\mathrm{a} 2=1+5.5 \times 10^{-31} \exp (7460 / \mathrm{T})\left[\mathrm{O}_{2}\right]$	
$3 \mathrm{DMS}+\mathrm{NO}_{3} \rightarrow \mathrm{SO}_{2}+$ products	$1.9 \times 10^{-13} \exp (520 / \mathrm{T})$	2
$4 \mathrm{SO}_{2}+\mathrm{OH} \rightarrow \mathrm{H}_{2} \mathrm{SO}_{4}$	[b1/(1+bl/b2)] $0.6{ }^{\text {b3 }}$	1
	$\mathrm{b} 1=3.0 \times 10^{-31} \times(300 / \mathrm{T})^{3.3}[\mathrm{M}]$	
	$\mathrm{b} 2=1.5 \times 10^{-12}$	
	$\mathrm{b} 3=\left\{1+[\log (\mathrm{bl} / \mathrm{b} 2)]^{2}\right\}^{-1}$	
Aqueous Phase		
$5 \mathrm{O}_{3}(\mathrm{~g}) \leftrightarrow \mathrm{O}_{3}(\mathrm{aq})$	$1.1 \times 10^{-2} \exp (2300(1 / \mathrm{T}-1 / 298))$	3
$6 \mathrm{H}_{2} \mathrm{O}_{2}(\mathrm{~g}) \leftrightarrow \mathrm{H}_{2} \mathrm{O}_{2}(\mathrm{aq})$	$7.4 \times 10^{4} \exp (6615(1 / \mathrm{T}-1 / 298))$	3
$7 \mathrm{H}_{2} \mathrm{O}(\mathrm{g}) \leftrightarrow \mathrm{H}^{+}+\mathrm{OH}^{-}$	$1.0 \times 10^{-14} \exp (-6716(1 / \mathrm{T}-1 / 298))$	3
$8 \mathrm{CO}_{2}(\mathrm{~g}) \leftrightarrow \mathrm{CO}_{2}(\mathrm{aq})$	$3.1 \times 10^{-2} \exp (2423 .(1 / \mathrm{T}-1 / 298))$	3
$9 \mathrm{NH}_{3}(\mathrm{~g}) \leftrightarrow \mathrm{NH}_{3}(\mathrm{aq})$	$5.8 \times 10^{1} \exp (4085 .(1 / \mathrm{T}-1 / 298))$	4
$10 \mathrm{SO}_{2}(\mathrm{~g}) \leftrightarrow \mathrm{SO}_{2}(\mathrm{aq})$	$1.23 \exp (3120 . *(1 / \mathrm{T}-1 / 298))$	4
$11 \mathrm{HNO}_{3}(\mathrm{~g}) \leftrightarrow \mathrm{HNO}_{3}(\mathrm{aq})$	$2.1 \times 10^{5} \exp (8700(1 / \mathrm{T}-1 / 298))$	3
$12 \mathrm{NH}_{3}(\mathrm{aq}) \leftrightarrow \mathrm{NH}_{4}^{+}+\mathrm{OH}^{-}$	$1.2 \times 10^{-4} \exp (-4325(1 / \mathrm{T}-1 / 298))$	4
$13 \mathrm{CO}_{2}(\mathrm{aq}) \leftrightarrow \mathrm{H}^{+}+\mathrm{HCO}_{3}$ -	$4.3 \times 10^{-7} \exp (-913(1 / \mathrm{T}-1 / 298))$	4
$14 \mathrm{HNO}_{3}(\mathrm{aq}) \leftrightarrow \mathrm{H}^{+}+\mathrm{NO}_{3}{ }^{-}$	15.4	3
$15 \mathrm{SO}_{2}(\mathrm{aq}) \leftrightarrow \mathrm{H}^{+}+\mathrm{HSO}_{3}^{-}$	$\left.1.7 \times 10^{-2} \exp (2090)(1 / \mathrm{T}-1 / 298)\right)$	4
$16 \mathrm{HSO}_{3}{ }^{-} \leftrightarrow \mathrm{H}^{+}+\mathrm{SO}_{3}=$	$6.0 \times 10^{-8} \exp (1120(1 / \mathrm{T}-1 / 298))$	4
$17 \mathrm{~S}(\mathrm{IV})=\mathrm{HSO}_{3}+\mathrm{SO}_{3}=$		
$18 \mathrm{~S}(\mathrm{IV})+\mathrm{H}_{2} \mathrm{O}_{2}(\mathrm{aq}) \rightarrow \mathrm{SO}_{4}=+$ products	$8 \times 10^{4} \exp (-3650(1 / \mathrm{T}-1 / 298)) / \mathrm{cl}$	5
$19 \mathrm{~S}(\mathrm{IV})+\mathrm{O}_{3}(\mathrm{aq}) \rightarrow \mathrm{SO}_{4}{ }^{=}+$products	$\mathrm{cl}=0.1+\left[\mathrm{H}^{+}\right]$	
	$\mathrm{d} 1+\mathrm{d} 2 /\left[\mathrm{H}^{+}\right]$	5
	$\begin{aligned} & \mathrm{d} 1=4.39 \times 10^{11} \exp (-4131 / \mathrm{T}) \\ & \mathrm{d} 2=2.56 \times 0^{3} \exp (-996 / \mathrm{T}) \end{aligned}$	

${ }^{\text {a }}$ Here, 1, Chin et al. [1996]; 2, Atkinson et al. [1992]; 3, Lelieveld [1990]; 4, Seinfeld [1986];
5, Feichter et al. [1996].
where (g) and (aq) correspond to gas and aqueous phase, respectiveiy. $\mathrm{S}\left(\mathrm{IV}\right.$) represents the sum of HSO_{3} and $\mathrm{SO}_{3}=$ ions dissolved in the aqueous phase. The rate constants and equilibrium constants for these reactions are listed in Table 1. As indicated in Table 1, the formation of sulfate in clouds depends strongly on the acidity of cloud droplets. Calculations by Seinfeld [1986] show that when water acidity is weak ($\mathrm{pH}>5$), the formation of $\mathrm{SO}_{4}=$ in the aqueous phase is dominated by (R7) whereas at low pH , sulfate is mainly formed by (R10). To explicitly calculate the formation of $\mathrm{SO}_{4}=$ in clouds, the acidity of the cloud water needs therefore to be calculated. We express the pH by

$$
\mathrm{pH}=-\log \left[\mathrm{H}^{+}\right],
$$

where $\left[\mathrm{H}^{+}\right]$represents the concentration of H^{+}in the liquid phase with

$$
\left[\mathrm{H}^{+}\right]+\left[\mathrm{NH}_{4}^{+}\right]=[\mathrm{OH}-]+\left[\mathrm{HCO}_{3}^{-}\right]+\left[\mathrm{NO}_{3}^{-}\right]+\left[\mathrm{HSO}_{3}^{-}\right]+2\left[\mathrm{SO}_{4}^{-}\right] .
$$

Here [OH-] accounts for the dissociation of pure water, while [HCO_{3}] results from the presence of dissolved carbon dioxide in the water droplets; $\left[\mathrm{NO}_{3}\right]$ accounts for the effect of nitric acid, and $\left[\mathrm{NH}_{4}{ }^{+}\right]$for the effect of ammonia on the overall acidity. Dentener and Crutzen [1994] have shown that ammonia is able to neutralize a great portion of the acids produced by the oxidation
of sulfur and nitrogen oxides. The presence of ammonia, therefore, has an important impact on acids in clouds. Because the heterogeneous conversion of SO_{2} to $\mathrm{SO}_{4}=$ depends strongly on cloud acidity (see Table 1), the presence of ammonia tends to enhance the formation of sulfate aerosols. Figure 1 shows the annually averaged surface ammonia concentrations. The highest concentrations are located in southern Asia, which is in agreement with the calculation of Dentener and Crutzen [1994]. The equilibrium constants for the dissolution and dissociation reactions are given in Table 1. The aqueous-phase reactions are solved separately from the gas- phase reactions.

Global emission inventories for $\mathrm{SO}_{\mathrm{x}}\left(\mathrm{SO}_{2}+\mathrm{SO}_{4}=\right.$) and DMS are taken from the International Global Atmospheric Chemistry/Global Emissions Inventory Activity (IGAC/GEIA) [Benkovitz, et al., 1994, 1996]. The original data, provided as monthly mean values at $1^{\circ} \times 1^{\circ}$ horizontal resolution, have been interpolated to the $2.8^{\circ} \times 2.8^{\circ}$ grid of the MOZART model. The emissions of SO_{x} are entirely anthropogenic with a global value of 67 Tg S/yr. Two percent of the total SO_{x} emissions are assumed to be in the form of $\mathrm{SO}_{4}=$. The global annually averaged emissions of SO_{2} and DMS are shown in Plate 1. The SO_{x} emissions are very nonuniformly distributed, with the highest emissions located in the United States, Europe, and eastern Asia. The DMS emissions from the ocean provide a total of $15.5 \mathrm{Tg} \mathrm{S} / \mathrm{yr}$, and are highest in coastal areas. In the present study, the emissions of carbonyl sulfide (OCS), and the volcanic emission of SO_{2} are not included

Ammonia

pptv

Figure 1. Calculated annually averaged surface concentrations (pptv) of ammonia.
in the model. These emissions strongly affect the formation of sulfate aerosols in the stratosphere [Crutzen, 1976; Turco et al., 1979; McCormick and Swissler, 1983; Visconti et al., 1988; Tie et al., 1994a], but have small effects in the troposphere, especially in the boundary layer.

Removal of chemical compounds from the atmosphere is represented by dry deposition and wet scavenging. Dry deposition varies with surface characteristics and meteorological conditions near the surface [Wesely and Hicks, 2000]. In this model we use the simple parameterization suggested by Feichter et al. [1996], with a dry deposition velocity for SO_{2} of $0.6 \mathrm{~cm} / \mathrm{s}$ on the continents, $0.8 \mathrm{~cm} / \mathrm{s}$ on the oceans, and $0.1 \mathrm{~cm} / \mathrm{s}$ on snow. The dry deposition velocity for $\mathrm{SO}_{4}=$ [Feichter et al., 1996] is assumed to be $0.2 \mathrm{~cm} / \mathrm{s}$ on all surfaces. The dry deposition velocity of DMS is assumed to be zero. The wet deposition scheme includes in-cloud as well as below-cloud scavenging. The in-cloud scavenging is formulated according to the parameterization of Giorgi and Chameides [1985]. The rate of scavenging is a function of rainwater tendency and of the effective Henry's law constants. Very soluble species are also removed efficiently through belowcloud scavenging [Levine and Schwartz, 1982], using the formulation described by Brasseur et al. [1998]. For gas scavenging, the effective Henry's law constants are calculated according to the rate of uptake by raindrops, and the rate of
dissociation inside the raindrop. According to the study of Giorgi and Chameides [1985], the scavenging rate for a gas with a low effective Henry law's constant is strongly dependent upon the solubility of this gas. However, for gases with high effective Henry's law constants (such as HNO_{3} and $\mathrm{H}_{2} \mathrm{O}_{2}$), changes in solubility produce only very small changes in the rate of scavenging. In this case, the rate of wet scavenging is controlled primarily by the strength of rainfall. sulfate aerosols are assumed to be very soluble in raindrops [Feichter et al., 1996], and their rate of scavenging is assumed to be the same as the rate of scavenging derived for HNO_{3}. The wet scavenging time constant for aerosol particles is of the order of a few days in the lower and middle troposphere (see Brasseur et al., 1998), with a minimum scavenging time constant of 1 to 2 days in the tropics.

2.2. Black Carbon Particles

Black carbon is produced by the combustion of hydrocarbons [Cooke and Wilson, 1996; Liousse et al., 1996]. Fossil fuel and biomass burning are therefore primary emissions of these particles. The global emissions of black carbon have been estimated by various authors to be $12 \mathrm{Tg} \mathrm{C} / \mathrm{yr}$ [Liousse et al., 1996], 18 Tg C/yr [Cooke and Wilson, 1996] to $24 \mathrm{Tg} \mathrm{C/yr}$ [Penner et al., 1993]. The total emission used in this study is 12

SO2 (Kg S/Km2/yr)

DMS (Kg S/Km2/yr)

BC ($\mathrm{Kg} \mathrm{C} / \mathrm{Km} 2 / \mathrm{yr}$)

Plate 1. Annually averaged (top) SO_{2}, (middle) DMS, and (bottom) black carbon emissions ($\mathrm{kg} \mathrm{C} \mathrm{km}^{-2} \mathrm{y}^{-1}$) of the model.
$\mathrm{Tg} \mathrm{C} / \mathrm{yr}$, which is on the low end of the previous studies, and is similar to the results recently suggested by Liousse et al. [1996]. Ward et al. [1996] and Ferek et al. [1998] suggest that black carbon emissions resulting from biomass burning are correlated with those of carbon monoxide (CO) produced by fires. In this study, we use the geographical and temporal distribution of CO emissions as implemented in the MOZART 1 model, with a black carbon emission scaled to $12 \mathrm{Tg} \mathrm{C} / \mathrm{yr}$. The annual average geographical distributions of black carbon emission are shown in Plate 1 (bottom panel). These emissions are large in Europe, eastern United States, and East Asia where large amounts of fossil fuel are burned. In Europe and in the eastern United States, emissions are highest. The contribution due to biomass burning is largest in the tropics, and its geographical distribution varies with season. Substantial black carbon emissions from large fires also occur in the boreal regions. The geographical distributions of the emissions adopted in this study are similar to the distributions proposed by Cooke and Wilson [1996] and by Liousse et al. [1996]. The study by Black and Kato [1995] suggests that aircraft fuel combustion is a substantial source of black carbon in the upper troposphere and lower stratosphere. At high latitudes, commercial aircraft usually fly above the tropopause, and a large fraction of the particles are injected into the lower stratosphere. At present, the source of black carbon from aircraft is not included in the model.

Laboratory measurements of heterogeneous reactions occurring on the surface of black carbon suggest that reactions take place primarily on hydrophobic particles [Golden and Manion, 1992; Fendel et al., 1995; Rogaski et al., 1997]. However, black carbon is often present as a heterogeneous mixture of carbon, sulfate, and other components whose behavior is hydrophilic [Ogren, 1984; Hagen et al., 1992; Parungo et al., 1994; Liousse et al., 1993]. It is believed that black carbon is coated by sulfate and other components, and the initial hydrophobic properties of black carbon are progressively lost as the age of particles increases, and hence the reactivity on elemental black carbon is gradually reduced, as suggested by DeMore et al. [1997]. A recent study by Aumont et al. [1999] suggests that the reaction of NO_{2} on black carbon particles occurs only on the young black carbon particles (hydrophobic carbon). To simulate the heterogeneous reactions occurring on elemental black carbon, we have separated the black carbon particles into two types of aerosols. The first type is assumed to represent new and fresh particles, which are directly emitted from the surface. These particles with high heterogeneous reactivity are assumed to be hydrophobic (i.e., not mixed with other aerosols and not coated by water and acids). These particles are not subject to wet scavenging but are subject to dry deposition with a deposition velocity of $0.1 \mathrm{~cm} / \mathrm{s}$ as suggested by Cooke and Wilson [1996]. For convenience, hydrophobic black carbon is named BC-1. The second type of black carbon particles represent aged particles, that are assumed to be coated with other aerosols including liquid water and sulfates, and therefore, are hydrophilic. With these surface properties the heterogeneous reactivity of the particles is substantially reduced. This type of aerosol is subject to both wet and dry deposition. The removal rate for wet scavenging is assumed to be the same as for sulfate aerosols. For convenience, hydrophilic black carbon particles are named BC-2. BC-2 is not directly emitted, but is converted from $\mathrm{BC}-1$ with a rate of 1 day as suggested by Cooke and Wilson [1996].

3. Simulation of Particle Distributions

All the distributions of sulfate and black carbon particles are obtained after 3 years of model integration. Only the results of the last year are used in the present analysis.

3.1. Global Distribution of SO_{2} and Sulfate Aerosol Particles

Plate 2 illustrates the surface distributions of gas-phase dimethyl sulfide (DMS) and sulfur dioxide $\left(\mathrm{SO}_{2}\right)$, as well as of sulfate aerosols $\left(\mathrm{SO}_{4}=\right)$. The calculated surface concentration of SO_{2} highlights the large impact of the anthropogenic sources of SO_{2} in Europe, Asia, and North America. The SO_{2} concentration decreases rapidly away from the source regions due to the short chemical lifetime of SO_{2} (~ 1 day). Over the ocean, where SO_{2} is mainly produced by the oxidation of DMS, its concentration is generally less than 100 pptv , i.e., 10 to 100 times smaller than the concentration predicted over the continents. The seasonal variability near the source regions is visible. Because the seasonal cycle of SO_{2} emission in the model is relatively small based on IGAC/GEIA [Benkovitz et al., 1994, 1996], the seasonal variation of SO_{2} oxidation plays an important role in the calculated seasonal cycle of SO_{2} and $\mathrm{SO}_{4}=$ densities. During winter the chemical sink of SO_{2} is low (low OH and $\mathrm{H}_{2} \mathrm{O}_{2}$ concentrations), and the boundary layer ventilation is weak, leading to high SO_{2} and low $\mathrm{SO}_{4}=$ concentrations. The simultaneous measurements of sulfur emissions, SO_{2} and $\mathrm{SO}_{4}=$ concentrations, in New York and Los Angeles [Hidy et al., 1979] show that SO_{2} concentrations are indeed highest during winter, and that sulfate aerosol concentrations are lowest during this season. The distribution of sulfate aerosols however, has a geographic pattern similar to SO_{2}, suggesting conversion of SO_{2} to $\mathrm{SO}_{4}=$.

A comparison between the calculated and the observed seasonal variation of $\mathrm{SO}_{4}{ }^{=}$in Europe and North America is presented in Figure 2a. Table 2 provides the latitude, longitude, and the annual mean concentration at each of these locations. In this region the calculated $\mathrm{SO}_{4}=$ concentrations are generally within 30% of the observed values except at three locations (Langenbrugge, Ispra, and Union County). A strong seasonal cycle is shown in both the calculated and observed results. During summer the surface $\mathrm{SO}_{4}=$ is typically high, while during winter it is usually low, suggesting that strong oxidation of SO_{2} takes place during summer.

The observed seasonal variation in $\mathrm{SO}_{4}=$ in the Arctic and subArctic regions (see Figure 2b) is substantially different from the seasonal variability in midlatitude Europe and North America. The maximum concentration occurs in March in contrast to the maximum found in July over Europe and the United States. Since the sulfur emissions at high latitudes are small, SO_{2} concentrations are relatively low in these regions (see Plate 2). The direct in situ chemical production of $\mathrm{SO}_{4}=$ by oxidation of SO_{2} is not significant here. $\mathrm{SO}_{4}=$ particles in the Arctic are therefore originating mainly from midlatitudes and their concentration is likely influenced by the dynamical exchanges between the source regions and the polar regions. The calculated seasonal variability does not reproduce the observations. The calculated maximum often occurs in July, which is ~ 4 months later than the measured maximum. The discrepancy is probably due to differences between CCM and actual winds during the

SO2 (JUNE)

SO2 (DEC.)

SO4 (JUNE) SO4 (DEC.)

DMS (JUNE)

DMS (DEC.)

Plate 2. Calculated June and December surface concentrations (pptv) of (top) SO_{2}, (middle) $\mathrm{SO}_{4}{ }^{=}$, and (bottom) DMS.

Figure 2a. Monthly-averaged seasonal variation of $\mathrm{SO}_{4}=$ mixing ratio (ppbv) in Europe and North America. Solid circles are the observations, and solid lines are the model results. Measurements are obtained from Chin et al. [1996], and the measurement sites are listed in Table 2.
measurements in the representation of winds by the general circulation model (CCM2).

Over the oceans (Figure 2c), both calculated and measured seasonal variabilities of $\mathrm{SO}_{4}=$ are not significant, and concentrations are very small (10 times smaller than the values in Europe and the United States) (see Figure 2c). It indicates at these locations, $\mathrm{SO}_{4}=$ is not significantly affected by transport from polluted source regions. In the Southern Hemisphere at high latitudes, $\mathrm{SO}_{4}=$ concentrations are high during summer and low during winter, indicating that the seasonal cycle of the oxidizing of DMS has a large effect on $\mathrm{SO}_{4}=$ over this region. The calculated seasonal variability is generally consistent with the observations, except at two locations (Mace Head and Bermuda) where sulfate aerosols are transported from the polluted European and American continents (see Plate 2).

A comparison between the calculated and the observed seasonal variation of SO_{2} is presented in Figure 3. Table 3 provides the latitude, longitude, and the annual mean concentration at each of these locations. The measured SO_{2} concentrations are widely spread, ranging from 18 to 8500 pptv . Typical surface concentrations in heavily polluted western Europe and eastern United States range from 3 to 8 ppbv . For relatively clean rural sites of Europe, measured values vary from 0.2 to 0.9
ppbv. The SO_{2} concentrations are very low over oceans in the Southern Hemisphere, with mixing ratios of only 18 pptv observed at Amsterdam Island. Such large spatial variations are well reproduced by the model (see Figure 3).

It is shown in Figure 2a and Figure 3 that SO_{2} and $\mathrm{SO}_{4}=$ exhibit strong seasonal cycles in North America, where most measurement sites are near the sources of SO_{2}. As a result, chemical conversion of SO_{2} to $\mathrm{SO}_{4}=$ plays an important role in controlling the concentrations of SO_{2} and $\mathrm{SO}_{4}=$ at these sites. During summer, OH and $\mathrm{H}_{2} \mathrm{O}_{2}$ concentrations are highest because of the strong sunlight, resulting in fast chemical conversion of SO_{2} to $\mathrm{SO}_{4}=$. The predicted seasonalities of SO_{2} and $\mathrm{SO}_{4}=$ are consistent with the measurements, with highest concentrations of SO_{2} and lowest $\mathrm{SO}_{4}=$ during winter and lowest concentrations of SO_{2} and highest $\mathrm{SO}_{4}=$ during summer.

Zonally averaged distributions of DMS, SO_{2}, and $\mathrm{SO}_{4}=$ are shown in Figure 4 for June and December conditions. DMS exhibits a strong seasonal variation in the vertical distribution at high latitudes. There are two major source regions for DMS, which are the oceans at high latitudes of the northern and southern hemispheres, respectively. Coastal regions around Africa, South America and Indonesia provide additional large sources of DMS (see Plate 1). In these source regions the level of OH and hence

Figure 2b. Same as Figure 2a except in Arctic region.
the destruction rate of DMS vary substantially with season. OH concentrations are highest during summer, resulting in the shortest chemical lifetime of DMS (less than 1 day). The highest DMS concentrations are located in the boundary layer of the source regions, and low concentration values are located in the middle troposphere, where DMS is efficiently removed by OH. During winter, however, OH concentrations are very low, and the chemical destruction is small, so that DMS is more likely to be transported from the boundary layer into the free troposphere. The zonally averaged SO_{2} concentration has a maximum in the boundary layer at midlatitudes in the Northern Hemisphere (source region), and decreases rapidly with altitude. The distribution of $\mathrm{SO}_{4}=$ exhibits less vertical gradient than SO_{2} because on the one hand SO_{2} concentrations are highest in the boundary layer, and on the other hand, the SO_{2} to $\mathrm{SO}_{4}=$ conversion is facilitated by the cloudiness of the free troposphere. In addition, horizontal and vertical mixing is more extensive for $\mathrm{SO}_{4}=$ than for SO_{2} because the lifetime of $\mathrm{SO}_{4}=$ (a few days) is larger than the lifetime of SO_{2} (1 day). The maximum concentration of $\mathrm{SO}_{4}=$ located at $45^{\circ} \mathrm{N}$ in the boundary layer during summer is displaced southward to $25^{\circ} \mathrm{N}$ during winter because of the shift in the concentration of chemical oxidants (OH and $\mathrm{H}_{2} \mathrm{O}_{2}$).

Measurements of vertical profiles of sulfur gases are limited, and are far from representing climatologically averaged profiles needed to validate the model. Vertical profiles of SO_{2} and $\mathrm{SO}_{4}=$
were measured during the EMEFS-II and NARE airborne experiments [Leaitch, 1998]. The EMEFS-II measurements were obtained from March 22 to April 29, 1990 in Egbert and Lake Traverse $\left(46.3^{\circ} \mathrm{N}, 79.5 \mathrm{~W}\right)$ and the NARE samples were collected from August 12 to September 8, 1993 along the east coast of the United States $\left(43.8^{\circ} \mathrm{N}, 66.5 \mathrm{~W}\right)$. The number of profiles is relatively large ($71 \mathrm{SO}_{2}$ profiles and $24 \mathrm{SO}_{4}=$ profiles in the case of EMEFS-II, and $46 \mathrm{SO}_{2}$ and $\mathrm{SO}_{4}=$ profiles in the case of NARE). Averaged vertical profiles can reduce or eliminate the effects of mesoscale disturbances which are not represented by the climatological model results. Comparisons between calculated and measured vertical profiles of SO_{2} and $\mathrm{SO}_{4}=$ are shown in Figure 5. During the EMEFS-II experiments, which took place in a polluted continental region, SO_{2} concentrations at the surface were very high (6 ppbv), and rapidly decreased with altitude. The calculated vertical profiles are quite consistent with the measurements. However, a large concentration at 6 km (11 ppbv) appears in the measurements, but is not reproduced by the model. This single large concentration may have been associated with a small scale dynamical perturbation such as a strong convection event. The decrease of $\mathrm{SO}_{4}=$ with altitude is not as rapid as the decrease of SO_{2}. The measured surface concentration of $\mathrm{SO}_{4}=$ was ~ 0.25 to 1.0 ppbv , and decreased to 0.25 ppbv at 6 km . The calculated vertical profile of $\mathrm{SO}_{4}{ }^{=}$reproduces the observed vertical profile well. In the NARE experiment which was not

Figure 2c. Same as Figure 2a except over the oceans.
directly located over the source region of SO_{2} but was very close to the coast of the United States, the maximum concentrations of SO_{2} and $\mathrm{SO}_{4}=$ appeared in the boundary layer, suggesting that polluted air had been transported from adjacent source regions. Both observed SO_{2} and $\mathrm{SO}_{4}=$ concentrations decreased rapidly with altitude in this region. The calculation reproduces the measurements well, although the calculated maximum of $\mathrm{SO}_{4}=$ density is slightly larger than the measured value.

3.2. Global Distributions of Black Carbon

The surface distributions of black carbon concentration ($\mathrm{ng} / \mathrm{m}^{3}$) calculated for June and December conditions are shown in Plate 3.

As described above, distinguishing between the hydrophobic and hydrophilic particles is important for considering heterogeneous reactions on the surface of the particles. The concentrations of hydrophobic, hydrophilic, and total black carbon are shown in the upper, middle, and lower panels, respectively. Hydrophobic black carbon aerosols are directly emitted at the surface. Because their conversion to hydrophilic black carbon occurs in ~ 1 day, hydrophobic black carbon particles cannot be transported over a long distance, and therefore remain confined primarily to continental regions. The highest concentration values are well correlated with anthropogenic and biomass burning emissions. Hydrophilic black carbon particles are removed by wet

Table 2. Comparison of the Calculated and the Observed Annually Averaged Surface Sulfate Concentrations ${ }^{\text {a }}$

Location	Observed	Calculated
Europe and United States		
Langenbrugge, Germany ($53 \mathrm{~N}, 11 \mathrm{E}$)	1577.	1158.
Illmitz, Austria (48N,17E)	1639.	1276.
Ispra, Italy ($46 \mathrm{~N}, 9 \mathrm{E}$)	1915.	1065.
Whiteface Mtn., N.Y. (44N,74W)	1083.	1155.
Albany, N.Y. (42N,74W)	1312.	1678.
Mayville, N.Y. (42N,80W)	1510.	1611.
Mohican Forest, Ohio (41N, 82W)	1576.	1183.
Franklin County, Indiana ($40 \mathrm{~N}, 85 \mathrm{~W}$)	1690.	1335.
Union County, Kentucky (38N, 88W)	1784.	1022.
Arctic and Subarctic		
Spitzsbergen, Norway (79N,12W))	144.	143.
Bear Island, Norway ($75 \mathrm{~N}, 19 \mathrm{E}$))	298.	332.
Jergul, Norway (62N,25E)	376.	666.
Janiskoski, Russia (69N,29E)	436.	622.
Alert, Canada (83N,61W)	215.	105.
Mould Bay, Canada (77N,119W)	190.	112.
Igloolik, Canada (69N,86W)	143.	599.
Heimaey, Iceland ($63 \mathrm{~N}, 20 \mathrm{~W}$)	164.	256.
Cree Lake, Canada (58N,107W)	171.	231.
Oceans and Antarctic		
Mace Head (53N,10W)	322.	381.
Bermuda (32N,65W)	560.	393.
Barbados (13N,60W)	204.	219.
Midway Island (28N,177W)	143.	133.
Oahu, Hawaii ($21 \mathrm{~N}, 158 \mathrm{~W}$)	135.	154.
Fanning Island ($4 \mathrm{~N}, 159 \mathrm{~W}$)	174.	211.
American Samoa (14S,171W)	98.	100.
New Caladonia (22S,167E)	112.	149.
Norfolk Island (29S,168E)	75.	133.
Cape Grim, Tasmania (42S,145E)	20.	109.
Palmer, Antarctica (65S,64W)	25.	60.
Mawson, Antarctica (68S,63E)	29.	38.

${ }^{\text {a }}$ Concentrations are in pptv.
deposition. Their residence time is on average about a few days which is longer than the lifetime of the hydrophobic carbon particles. As a result, the concentrations of hydrophilic black carbon are higher than those of hydrophobic black carbon. Specifically, the maximum concentration of hydrophilic black carbon is greater than $2000 \mathrm{ng} / \mathrm{m}^{3}$, while it is $\sim 1000 \mathrm{ng} / \mathrm{m}^{3}$ in the case of hydrophobic particles. The total concentration of black carbon is therefore heavily weighted towards the hydrophilic particles, although the surface distribution is similar for the two types of particles. The patterns produced by the MOZART model are quite similar to the distributions calculated by Liousse et al. [1996]. The model also shows that significant amounts of black carbon are transported from biomass burning sources in both Africa and South America to the remote regions of the tropical Atlantic Ocean, which is consistent with the measurements of Andreae et al. [1984]. The seasonal variations are visible for both the hydrophilic and hydrophobic particles. The surface concentrations of black carbon in Europe, eastern United States, and eastern China are higher during winter than during summer because of the seasonal variation in the anthropogenic emissions of black carbon.

Figure 6 shows the vertical and latitudinal distributions of the zonally averaged mass of hydrophobic and hydrophilic black carbon for June and December conditions. The mass of hydrophobic black carbon is largest in the boundary layer, and decreases rapidly in the free troposphere. The heterogeneous reactions associated with black carbon aerosols are therefore
limited to the lower troposphere. The model shows that the concentration of hydrophilic black carbon is significant in the lowest levels of the free troposphere although it drops gradually above the boundary layer. Above 10 km , the abundance of black carbon becomes very low as shown experimentally by Blake and Kato [1995]. These authors have indicated that the presence of black carbon in the upper troposphere and lower stratosphere results primarily from aircraft emissions. In the tropics, upward motion brings black carbon into the free troposphere. The peak of the black carbon mass concentration is located at $20^{\circ} \mathrm{S}$ in June, and $20^{\circ} \mathrm{N}$ in December, as expected from the seasonal variation in convective activity.

Table 4 compares measured and calculated black carbon mass concentrations for ocean and continental sites, respectively. The data are divided into four groups (continental rural, continental remote, Atlantic ocean, and Pacific ocean sites) as suggested by Liousse et al. [1996]. Because the observations are often single measurements in which large variations associated with small scale perturbations are exhibited, some disagreement between the model and measurements is expected. The comparison of model calculations with observations is generally consistent: both the calculated and measured total black carbon masses are highest (> $1000 \mathrm{ng} / \mathrm{m}^{3}$) in the regions of anthropogenic sources (Northern Hemisphere), and lowest ($<1 \mathrm{ng} / \mathrm{m}^{3}$) in the Antarctic region.

The measured data points shown in Table 4 are plotted against the calculated values in the upper panel of Figure 7. From this comparison, we see that the model values are quite well correlated with the observations, especially when the mass of black carbon is large. However, when the mass of black carbon is low, the correlation is weaker. The lower panel represents the observationcalculation relationship for the four groups of sites (Atlantic Ocean, Pacific Ocean, continental rural, and continental remote). This comparison reveals a systematic difference between observed and calculated values in each individual group; probably associated with the crude resolution of the global model (see Plate 1). Over the ocean the calculated mass of black carbon is higher than the observed values, perhaps due to the fact that observation sites over the ocean are often located in coastal areas. The ocean grid boxes of the model located near the coasts are often contaminated by continental sources, producing an overestimation of the black carbon mass. Similarly, grid cells located in rural continental areas are often affected by local air pollution sources. In a model with limited spatial resolution the averaged emission rates within a grid cell underestimate the emissions near the source regions and overestimate the emissions in the coastal regions. An underestimation of black carbon emissions in

Table 3. Comparison of the Calculated and the Observed Annually Averaged Surface SO_{2} Concentrations ${ }^{\text {a }}$

Location	Observed	Calculated
Langenbrugge, Germany (53N,11E)	4884.	7306.
Illmitz, Austria (48N, 17E)	8029.	7486.
Ispra, Italy (46N,9E)	3485.	4520.
Mohican Forest, Ohio (41N,82W)	7978.	4858.
Franklin County, Indiana (40N,85W)	8523.	8055.
Union County, Kentucky (38N,88W)	7516.	5247.
Spitzsbergen, Norway (79N,12W)	157.	37.
Bear Island, Norway (75N,19E)	205.	207.
Jergul, Norway (62N,25E)	699.	2417.
Janiskoski, Russia (69N,29E)	899.	1654.
Cree Lake, Canada (58N,107W)	242.	347.
Amsterdam Island (38S,78E)	18.	7.

[^1]

Figure 3. Monthly-averaged seasonal variation of SO_{2} mixing ratio (ppbv). Solid circles are the observations, and solid lines are the model results. Measurements are obtained from Chin et al. [1996], and the measurement sites are listed in Table 3.
continental rural regions was noted by Liousse et al. [1996] in their model calculations.

4. Effects of Heterogeneous Reactions on Tropospheric Chemical Compounds

4.1. Implementation of Heterogeneous Reactions

Heterogeneous chemical kinetics and its application to the troposphere is a relatively new and a rapidly developing field. Currently, more than 40 reactions occurring in various aerosol
particles are listed in the compilation of chemical reactions established by DeMore et al. [1997]. It is therefore important to determine which heterogeneous reactions are likely to occur on the surface of aerosols, and have the potential to affect tropospheric composition. This requires that the probability of occurrence (uptake coefficient) of potentially important reactions be sufficiently high.

According to DeMore et al. [1997], the measured uptake coefficient (γ) is between 0.1 and 1.0 for HO_{2} on sulfate aerosols. However, Mozurkewich et al. [1987] show that only when sulfate

Figure 4. Zonal-averaged mixing ratios (pptv) of (top) DMS), (middle) SO_{2}, and (bottom) $\mathrm{SO}_{4}=$ in June and December conditions.
aerosols contained a sufficient amount of Cu ions, reaction of HO_{2} with sulfate aerosols was observed. Otherwise, the reaction of HO_{2} with sulfate aerosols was not important for atmospheric conditions. The reaction of $\mathrm{N}_{2} \mathrm{O}_{5}$ on sulfate aerosol which produces HNO_{3} has been measured by several groups who have found values of γ ranging from 0.02 to 0.20 [Van Doren et al., 1991; Hanson and Ravishankara, 1992; Fried et al., 1994; George et al., 1994; Hanson and Lovejoy, 1994; Zhang et al., 1995; Robinson et al., 1997]. The lowest uptake coefficient is observed by George et al. [1994], who report values decreasing from 0.03 to 0.013 with the increasing in temperature. The study by Hu and Abbatt [1997] shows that the uptake coefficient of $\mathrm{N}_{2} \mathrm{O}_{5}$ is a function of relative humidity (RH) and ionic composition. For low RH the uptake coefficient on sulfate aerosols varies from 0.05 to 0.06 , while for higher RH it decreases
to 0.02 . The uptake of gas-phase formaldehyde, $\mathrm{CH}_{2} \mathrm{O}$, by sulfate aerosols has been measured by Jayne et al. [1996]. Their measurement shows that the uptake coefficient for $\mathrm{CH}_{2} \mathrm{O}$ by sulfate aerosols ranges from 0.012 to 0.025 when the weight percentage of sulfate varies from 55 to 70% and the temperature changes from 240 K to 280 K . Their measurement should be regarded as solubility-determined upper limits.

The reactions of $\mathrm{HNO}_{3}, \mathrm{O}_{3}$, and NO_{2} on the surface of soot have been measured in a number of laboratory experiments, and the measured values are very different from each other. The rate at which HNO_{3} reacts on black carbon $\left(\mathrm{HNO}_{3}+\mathrm{BC}\right)$ to produce NO_{x} has been measured by Thlibi and Petit [1994], Rogaski et al. [1997], Choi and Leu [1998], and Saathoff et al. [1999]. The measurements by Thlibi and Petit [1994] and Rogaski et al. [1997] suggest that the uptake coefficient γ is of the order of 10^{-2}.

Figure 5. Vertical profiles of SO_{2} and $\mathrm{SO}_{4}=$ for the (top) EMEFS and the (bottom) NARE measurements [Leaitch, 1998]. Solid lines are the model results, and solid circles are the observations.

However, Choi and Leu [1998] show that the decomposition of HNO_{3} to NO_{x} does not take place at 220 K but does occur at 296 K . Their results suggest that the heterogeneous conversion of HNO_{3} to NO_{x} on soot should not be included in atmospheric models of the upper troposphere and of the lower stratosphere. The recent measurement by Saathoff et al. [1999] shows that the coefficient is much smaller than derived from the previous measurements and is probably of the order of 10^{-6}.

The various measurements for the uptake of O_{3} on soot particles are also very scattered. Fendel et al. [1995], Fendel and Ott [1993], and Rogaski et al. [1997] report that O_{3} reacts on black carbon particles with an uptake coefficient ranging from 2 x 10^{-4} to 3.3×10^{-3}, but the recent study by Saathoff et al. [1999]
shows that the uptake coefficient is only on the order of 10^{-5}. Saathoff et al. [1999] argue that the reason for the smaller reaction coefficients for HNO_{3} and O_{3} on soot surface is that their measurements address the heterogeneous processes on a longer timescale (hours).

Tabor et al. [1993], Rossi et al. [1995], and Rogaski et al. [1997] report that NO_{2} can react on the surface of soot particles, with an uptake coefficient ranging from 0.04 to 0.11 , but a recent measurement by Kleffmann et al. [1999] shows that the uptake coefficient is only of the order of 10^{-6}. As suggested by Aumont et al. [1999], the sites on the surface of soot may be deactivated as a result of NO_{2} reactions. Therefore the high initial rates of the reactions do not persist for long timescales. The large scatter in

Figure 6. Zonally averaged mixing ratios (pptv) of (top) hydrophilic black carbon and (bottom) hydrophobic black carbon in June and December.
the data reported for these reactions points to the need for further laboratory studies. Longfellow et al. [1999] and Goodman et al. [1999] discuss the heterogeneous reaction of NO_{2} on soot particles, which is believed to produce HONO. HONO chemistry is not included in the MOZART model, and therefore this heterogeneous reaction will not be considered in the present study.

Considering the large uncertainty associated with the heterogeneous reactions, we have conducted the following studies to estimate the potential effects of aerosols on atmospheric chemical constituents: (1) The measured uptake coefficient for HO_{2} and OH on sulfate aerosols ranges from 0.1 to 1.0 [DeMore et al., 1997]. In this study we arbitrarily chose the uptake coefficient to be 0.2 and 0.5 . According to the study by Mozurkewich et al. [1987], these values should be regarded as upper limit. (2) The reaction coefficient for $\mathrm{N}_{2} \mathrm{O}_{5}$ on sulfate aerosols is less uncertain, so that $\gamma=0.1$ is used in the model. (3) The measured reaction coefficient for $\mathrm{CH}_{2} \mathrm{O}$ on sulfate aerosols ranges from 0.011 to 0.022 [Jayne et al., 1996] so that we use the
value of 0.011 as an lower limit and 0.022 as a upper limit. (4) The measured reaction coefficients on soot particles differ by several orders of magnitude. We will consider the calculated effects of reactions on soot aerosols solely in sensitivity studies. We have used the uptake coefficient of 3.3×10^{-3} as an upper limit value and 7×10^{-5} as a lower limit value for the reaction O_{3} on hydrophobic soot. The heterogeneous reactions included in the model are therefore the following:
(R13)
(R14)
(R15)

$$
\begin{gather*}
\mathrm{HO}_{2}+(\mathrm{SF}) \rightarrow \text { products, } \tag{R12}\\
\mathrm{N}_{2} \mathrm{O}_{5}+(\mathrm{SF}) \rightarrow 2 \mathrm{HNO}_{3}, \\
\mathrm{CH}_{2} \mathrm{O}+(\mathrm{SF}) \rightarrow \text { products }, \\
\left.\mathrm{O}_{3}+\text { (soot }\right) \rightarrow \text { products, }
\end{gather*}
$$

where SF and soot represent the surface of sulfate and soot aerosols, respectively. In reactions of(R12), (R14), and (R15) the reaction products are unknown according to current laboratory measurements. In our model calculations those reactions are considered as chemical losses for the reactants. This assumption

Table 4a. Comparison of the Calculated and the Observed Black Carbon (BC1+BC2) Surface Concentration at Ocean Sites

Location	Concentration ng C/m ${ }^{3}$	
	Observed	Calculated
Atlantic Ocean		
North Atlantic 1 (68.0N, 8.0W)	112.0	100.9
North Atlantic 2 (42.5N, 14.0W)	50.0	84.9
North Atlantic 3 (20.0S, 40.0W)	30.0	146.2
Bermuda (32.2N, 64.5W)	60.0	60.9
Sargasso Sea (30.0N, 50.0W)	20.0	47.5
Pacific Ocean		
Pacific 1 (45.0N, 160.0W)	20.0	14.4
Pacific $2(20.0 \mathrm{~N}, 160.0 \mathrm{~W}$)	7.0	19.4
Pacific 3 (0, 160.0W)	3:0	11.0
Pacific 4 (20.0S, 160.0W)	8.0	3.1
Mauna Loa (19.3N, 155.4W)	7.5	25.4
East Pacific (0, 120.0W)	10.0	10.9
Pacific 5 (30.0N, 128.0E)	355.0	320.1
Pacific 6 (30.0N, 125.0E)	505.0	529.6
Pacific 7 (30.0N, 126.0E)	133.0	362.6
Pacific 8 (10.0N, 165.0E)	25.0	3.9
Enewetak (11.3N, 162.1E)	50.0	11.9
China Sea (10.0N, 113.0E)	33.0	71.3
West Pacific (0, 150.0E)	9.0	9.6
Samoa (13.6S, 172.0W)	19.0	3.6

will result in an overestimate of the chemical loss if the products regenerate the chemical reactants.

Most chemical species removed by heterogeneous reactions can also be lost through gas-phase reactions. If gas-phase removal is fast, heterogeneous reactions are unlikely to play a significant role. The lifetime associated with heterogeneous reactions $\tau_{\text {het }}$ is provided by the inverse of the pseudo first-order heterogeneous rate constant [Schwartz, 1986]:

$$
\begin{equation*}
k_{\text {het }}=[r / D g+4 /(\mathrm{c} \gamma)]^{-1} A \times 10^{-8} \tag{1}
\end{equation*}
$$

where $c=[8 \mathrm{kT} / \pi \mathrm{m}]^{1 / 2}(\mathrm{~cm} / \mathrm{s})$ is the mean molecular speed of the gas at temperature $T, A\left(\mu \mathrm{~m}^{2} / \mathrm{cm}^{3}\right)$ is the surface area density of the particles, γ is the uptake coefficient, $m(\mathrm{~g})$ is the molecular mass of the gas-phase molecule under consideration, k is the Boltzmann constant, $D_{g}\left(\mathrm{~cm}^{2} / \mathrm{s}\right)$ is the gas-phase diffusion coefficient, and r is the mean radius of the aerosol particles. According to the calculation of Perry and Green [1984], D_{g} is close to $0.1 \mathrm{~cm}^{2} / \mathrm{s}$.

Figure 8 compares the characteristic time constant for the heterogeneous reaction $\mathrm{OH}+\mathrm{SF}$ (uptake coefficient $\gamma=0.2$) with the time constant due to gas-phase loss reactions. Figure 8 shows that although the heterogeneous destruction of OH is relatively fast ($\tau_{\text {het }}$ is ~ 1000 seconds at northern midlatitudes near the surface), it can be neglected compared to gas-phase photochemical destruction ($\tau_{\text {gas }}=1$ to 2 s).

To study the heterogeneous reactions on the surface of aerosols requires that the surface area of aerosols be known. The aerosol quantity that is calculated in the model is the aerosol mass. To convert mass to surface area, the mean radius of the aerosol particles must be determined or assumed. The measured properties of sulfate and black carbon particles are summarized by Blake and Kato [1995]. Their study suggests that the average radius is $\sim 0.1 \mu \mathrm{~m}$ in the case of black carbon particles, and ~ 0.15 $\mu \mathrm{m}$ in the case of sulfate aerosols. Because the detailed
microphysical processes of aerosols are not included in the model, the size distribution of aerosols is unknown. To convert the mass into surface area, we assume that (1) aerosols are spherical, and (2) a mean radius is used to represent the detailed size distribution. With these assumptions, the aerosol surface area density ($\mu \mathrm{m}^{2} / \mathrm{cm}^{3}$) can be calculated from the aerosol mass ($\mathrm{g} / \mathrm{cm}^{3}$) as follows:

$$
\begin{equation*}
\text { Area }=3 \mathrm{Mass} /\left(\rho r_{m}\right) \times 10^{8} \tag{2}
\end{equation*}
$$

where $\rho\left(\mathrm{g} / \mathrm{cm}^{3}\right)$ is the mass density of the aerosol, $\mathrm{r}_{m}(\mathrm{~cm})$ is mean radius, and Mass is the total mass. Black carbon aerosol density is assumed to be $2.0 \mathrm{~g} / \mathrm{cm}^{3}$ [Blake and Kato, 1995], and sulfate aerosol density is calculated according to the weight percentage of sulfuric acid [Tie et al., 1994a]. However, the spherical assumption cannot be applied to black carbon. Typical geometries for these particles range from compact spheroidal shapes to chain aggregates [Blake and Kato, 1995]. With the same aerosol mass, different shapes of particles result in very different aerosol surface areas. To account for this effect, Blake and Kato [1995] assume that a particle of black carbon is a cluster of small spherical particles ($0.02 \mu \mathrm{~m}$ in radii). From (2) we see that the surface area of a cluster of small spherical particles is 5 times larger than the surface area calculated for larger spherical particles ($0.1 \mu \mathrm{~m}$ radius), for the same total mass.

Figure 9 shows the zonally averaged surface area densities ($\mu \mathrm{m}^{2} / \mathrm{cm}^{3}$) calculated for sulfate, black carbon, and hydrophobic black carbon in June, indicating that the highest sulfate surface area density is located in the boundary layer of the Northern Hemisphere midlatitudes with a maximum value of above 50

Table 4b. Comparison of the Calculated and the Observed Black Carbon (BC1 +BC 2) Surface Concentration at Continental Sites

	Concentration ng C/m ${ }^{3}$	
Location	Observed	Calculated
Rural Sites		
Mace Head (53.3N, 9.8W)	168.5	153.2
Florida (28.0N, 82.0W)	400.0	342.1
SouthWest (34.3N, 106.0W)	185.0	188.0
North Carolina (35.3N, 80.0W)	520.0	532.2
Abisko (68.2N, 18.3E)	520.0	371.2
Hemsby (52.4N, 1.4E)	466.0	380.2
Abstumani (41.4N, 42.5E)	980.0	743.2
Dogo (36.2N, 133.2E)	623.0	719.8
Isenbai (38.3N, 68.4E)	1000.0	475.4
BeJing (40.0N, 116.0E)	1710.0	1144.6
Lin An (30.5N, 119.5E)	2070.0	1051.1
Ecuador (2.0S, 77.3W)	310.0	196.0
Brazil (10.0N, 55.0W)	410.0	333.5
Peru (10.0S, 76.0W)	24.0	20.2
Cape Grim (40.7S,144.4E)	3.0	13.1
Greenland (70.0N, 40.0W)	30.0	28.9
Barrow (71.2N, 156.3W)	43.0	43.6
Arctic Point (74.0N, 25.0E)	148.0	208.1
Spitsbergen (79.0N, 12.0E)	66.0	57.6
Alert Summer (82.5N, 62.5W)	15.0	18.1
Alert Winter (82.5N, 62.5W)	75.0	86.4
Amsterdam Island (37.5N, 77.3E)	5.5	5.5
New Zealand (41.0S, 174.0E)	2.2	6.1
Halley Bay (75.4S, 27.0W)	1.7	.7
South Pole 1 (87.0S, 102.0W)	.3	.6
South Pole 2 (87.0S, 102.0W)	1.3	.6

Plate 3. June and December surface mixing ratios (pptv) of (top) hydrophobic black carbon, (middle) hydrophilic black carbon, and (bottom) total black carbon.

ロヨノจากวาจง

Figure 9. Zonally-averaged surface areas of (top) sulfate aerosols ($\mu^{2} / \mathrm{cm}^{3}$), (middle) total black carbon aerosols, and (bottom) hydrophobic black carbon aerosols in June.

Changes in OH (June)

-20	-15	-12	-10	-8	-6	-4	-2	-1

(PPTV * 1e-4)

Changes in HO2 (June)

(PPTV * 1e-2)
Plate 4. Changes in (top) OH and (bottom) HO_{2} at the surface due to the formation of sulfate aerosols in June.

June

Figure 10. Zonally-averaged changes in $\mathrm{H}_{2} \mathrm{O}_{2}$ (ppiv) due to the formation of sulfate aerosols in June.
$\mu \mathrm{m}^{2} / \mathrm{cm}^{3}$. The area density decreases rapidly with altitude. The surface area of black carbon has a geographical distribution similar to sulfate aerosols at midlatitudes in the Northern Hemisphere. However, a secondary maximum associated with biomass burning in the tropics is also visible. The highest values in the boundary layer of the northern midlatitudes are close to 30 $\mu \mathrm{m}^{2} / \mathrm{cm}^{3}$ and hence are smaller than in the case of sulfate aerosols. As described in section 2.5, heterogeneous reactions on black carbon are only occurring on the surface of hydrophobic particles. Figure 9 shows that the surface area density of the hydrophobic black carbon particles is substantially smaller than either of sulfate or hydrophilic black carbon particles. The highest surface area is $\sim 10 \mu \mathrm{~m}^{2} / \mathrm{cm}^{3}$ near the surface at midlatitudes in the Northern Hemisphere, and is well confined to the lower troposphere. The emissions from aircraft in the upper troposphere are not included in the present model study, so that the surface area of hydrophobic black carbon is probably underestimated in the upper troposphere.

4.2. Effects of Oxidation of Sulfate Aerosols

The concentrations of oxidants is changed when chemical conversion of SO_{2} to $\mathrm{SO}_{4}=$ occurs. The oxidants $\left(\mathrm{OH}, \mathrm{HO}_{2}\right.$, and
$\mathrm{H}_{2} \mathrm{O}_{2}$) are affected in the following ways: (1) Gas-phase OH is converted to HO_{2} through the reaction of $\mathrm{SO}_{2}+\mathrm{OH}$. As shown in Plate 4 (top) the largest reduction in the OH concentration occurs during northern summertime in the regions that are most heavily influenced by anthropogenic emissions of sulfur (eastern United States, Europe, and eastern China). As a result, the concentration of HO_{2} increases in the same regions (see Plate 4 (bottom)). However, the changes in OH and HO_{2} due to this reaction are very small (less than a few percent). (2) The oxidation of SO_{2} by $\mathrm{H}_{2} \mathrm{O}_{2}$ in the aqueous phase tends to reduce the $\mathrm{H}_{2} \mathrm{O}_{2}$ abundance in the gas phase. Figure 10 shows that the reduction in the $\mathrm{H}_{2} \mathrm{O}_{2}$ mixing ratio ranges from 5 to 60 pptv in the Northern Hemisphere during summer. In areas with high sulfur emissions (eastern United States, Europe, and eastern China), this $\mathrm{H}_{2} \mathrm{O}_{2}$ reduction is ~ 5 to 10%. Overall, the calculation shows that the effect of SO_{2} oxidation on the oxidants $\left(\mathrm{OH}, \mathrm{HO}_{2}\right.$, and $\left.\mathrm{H}_{2} \mathrm{O}_{2}\right)$ in the troposphere is not very significant.

4.3. Reaction of HO_{2} on Sulfate Aerosols

Even though the uptake of OH by sulfate aerosol is very efficient ($\gamma>0.2$), the direct changes in the OH concentration resulting from heterogeneous processes are small due to the short

Figure 11. (top) Zonally-averaged time constants of HO_{2} (100 s) due to gas-phase chemical destruction and (middle) heterogeneous chemical destruction on sulfate aerosol particles. (bottom) The number density of HO_{2} (\#/ $\mathrm{cm}^{3} \times 10^{7}$) in June.

Figure 12. Changes (percent) due to the heterogeneous chemical reaction of HO_{2} on (top) sulfate aerosols in HO_{2}, (middle) OH , and (bottom) O_{3} with (left) $\gamma=0.2$ and with (right) $\gamma=0.5$ in June.
photochemical lifetime of OH . In contrast, the lifetime for HO_{2} associated with gas-phase processes is longer than that of OH in the lower troposphere, so that heterogeneous uptake by sulfate aerosol can be comparable to photochemical destruction. Figure 11 shows that the photochemical lifetime of HO_{2} is between 100 and 1000 s , while the time constant associated with heterogeneous uptake by sulfate aerosols is about 500 to 5000 s in the lower troposphere (Northern Hemisphere) during summer. Above 10 km , however, heterogeneous destruction is much slower than photochemical gas-phase destruction, and hence the presence of sulfate aerosols should not significantly affect HO_{2} in the upper troposphere. During winter in the Antarctic the density of HO_{2} is
so small that the heterogeneous reaction does not play an important role in this region.

Figure 12 (top) shows the calculated changes (percent) in HO_{2} due to uptake by sulfate aerosols (with uptake coefficients of 0.2 in left panels and 0.5 in right panels) in June. It indicates that HO_{2} is reduced in the lower troposphere. The highest decrease ($>10 \%$) occurs in northern mid- and high latitudes. The chemical lifetime (minutes) of HO_{2} at these latitudes during summer is much smaller than the time constants associated with horizontal mixing and deposition. For steady-state conditions, the mass conservation of HO_{2} can be expressed by

$$
\begin{equation*}
P=L=\mathrm{X} / \tau, \tag{3}
\end{equation*}
$$

Figure 13. Zonally averaged reaction coefficient for $\mathrm{N}_{2} \mathrm{O}_{5}$ on sulfate aerosols (1/s) in (left) June and December, and zonally-averaged $\mathrm{N}_{2} \mathrm{O}_{5}$ mixing ratio (pptv) in (right) June and December.
where X is the mixing ratio of HO_{2}, P is its chemical production rate, L is its chemical loss rate, and τ is its chemical lifetime. The percentage change in the modeled HO_{2} mixing ratio due to the addition of heterogeneous uptake is given by changes in its chemical lifetime can be estimated from (3):

$$
\begin{equation*}
\frac{\Delta X}{X}=-\frac{\tau_{g}}{\tau_{g}+\tau_{h}} \times 100 \% \tag{4}
\end{equation*}
$$

where τ_{g} and τ_{h} are the photochemical and heterogeneous chemical lifetimes of HO_{2}, respectively. For example, for τ_{g} and τ_{h} equal to 500 and 5000 seconds respectively at 4 km at $80^{\circ} \mathrm{N}$ latitude, the estimated change in HO_{2} is about -10% which is close to the model results shown in Figure 12.

Figure 12 (left) (with a lower uptake coefficient of 0.2) show that the changes in HO_{2} lead to changes in OH and O_{3} concentrations in the lower troposphere of the Northern

Hemisphere during summer. Because HO_{2} rapidly reacts with NO to produce OH and NO_{2}, the amount of HO_{2} converted to OH is reduced when HO_{2} is taken up by sulfate aerosols. The pattern of the OH decrease is similar to that of HO_{2}, with the highest reduction (10%) occurring at high northern latitudes below 5 km altitude. As the rate of $\mathrm{HO}_{2}+\mathrm{NO}$ reaction is reduced, the photochemical production of tropospheric ozone is also reduced. However, this process is in competition with the $\mathrm{HO}_{2}+\mathrm{O}_{3}$ reaction which destroys ozone. As a result the net change in O_{3} concentration associated with heterogeneous uptake of HO_{2} is very small (less than 1% reduction).

A high uptake coefficient is suggested by Cantrell et al. [1996]. According to their study, this uptake coefficient could be as high as 0.5 to 1.0 . Figure 12 (right) shows the model results when the adopted uptake coefficient is 0.5 . Compared to the results with uptake coefficient of 0.2 , the decrease in HO_{2} density calculated in this case is approximately twice as large with a 20%

Figure 14. Calculated changes (percent) due to the heterogeneous chemical reaction of $\mathrm{N}_{2} \mathrm{O}_{5}$ on sulfate aerosols for (a) $\mathrm{N}_{2} \mathrm{O}_{5}$, (b) HNO_{3}, (c) NO_{x}, and (d) O_{3} in December.
reduction in the lower troposphere of the northern hemisphere during summer. Since the heterogeneous chemical lifetime τ_{h} is inversely proportional to the uptake coefficient γ (see (1)), a 2.5 times increase in γ leads to a maximum of a 25% decrease in the HO_{2} density. With an uptake coefficient reaching its upper limit of 1.0 , the reduction in HO_{2} predicted from (4) could be as large as 50% in the lower troposphere of the Northern Hemisphere during summer.

4.4. Reaction of $\mathrm{N}_{2} \mathrm{O}_{5}$ on Sulfate Aerosols

The reaction of $\mathrm{N}_{2} \mathrm{O}_{5}$ on the surface of sulfate aerosols $\left(\mathrm{N}_{2} \mathrm{O}_{5}+\right.$ SF) plays an important role in the lower stratosphere, as highlighted by Hofmann and Solomon [1989], Brasseur et al. [1990], Rodriguez et al. [1991], Fahey et al. [1993], and Tie et al. [1994b]. These studies show that this process is efficient in converting $\mathrm{N}_{2} \mathrm{O}_{5}$ into HNO_{3} during wintertime at middle to high latitudes. Because $\mathrm{N}_{2} \mathrm{O}_{5}$ is formed by the reaction of $\mathrm{NO}_{2}+\mathrm{NO}_{3}$,
NO_{x} concentrations are also significantly reduced by this mechanism. The study by Tie et al. [1994b] suggests that NO_{2} was reduced by as much as a factor of 2 at midlatitudes in the lower stratosphere after the volcanic eruption of Mount Pinatubo in 1991 . However, the effects of this reaction in the troposphere have not yet been completely assessed.

According to the (R13) and (1), the heterogeneous conversion of $\mathrm{N}_{2} \mathrm{O}_{5}$ to HNO_{3} depends strongly on the first-order rate coefficient for the heterogeneous reaction and the concentration of gas-phase $\mathrm{N}_{2} \mathrm{O}_{5}$. Figure 13 shows the zonal mean rate coefficient for heterogeneous reaction (R13) and the $\mathrm{N}_{2} \mathrm{O}_{5}$ mixing ratio in June and December. The highest reaction coefficients are found with a maximum of $40 \times 10^{-5}(1 / \mathrm{s})$, corresponding to a lifetime of $\mathrm{N}_{2} \mathrm{O}_{5}$ of $\sim 40 \mathrm{~min}$ in northern midlatitudes in June. During northern hemispheric winter (December) the maximum of the reaction rate is reduced to $10 \times 10^{-5}(1 / \mathrm{s})$, corresponding to a lifetime for $\mathrm{N}_{2} \mathrm{O}_{5}$ of ~ 3 hours, because of the smaller loading of

Figure 15. Same as Figure 14, but in June.
sulfate aerosols (see Figure 4). The concentration of $\mathrm{N}_{2} \mathrm{O}_{5}$ has a maximum in midlatitudes in the boundary layer in the same location as the elevated sulfate aerosols from anthropogenic emissions. However, the strong temperature dependent thermal decomposition of $\mathrm{N}_{2} \mathrm{O}_{5}$ in the boundary layer produces a strong seasonal variability of $\mathrm{N}_{2} \mathrm{O}_{5}$ in the boundary layer of the middle latitudes of the Northern Hemisphere where large sulfate aerosol loading is located. During summer the concentration of $\mathrm{N}_{2} \mathrm{O}_{5}$ in the region is generally $\sim 1 \mathrm{pptv}$, while in the winter it is ~ 50 to 100 pptv.

Without the heterogeneous conversion of $\mathrm{N}_{2} \mathrm{O}_{5}$ into nitric acid, $\mathrm{N}_{2} \mathrm{O}_{5}$ is mainly formed and destroyed by the following reactions:
(R16)
(R17)

$$
\mathrm{NO}_{2}+\mathrm{O}_{3} \rightarrow \mathrm{NO}_{3}+\mathrm{O}_{3}
$$

(R18)

$$
\mathrm{NO}_{3}+\mathrm{NO}_{2}+\mathrm{M} \rightarrow \mathrm{~N}_{2} \mathrm{O}_{5}+\mathrm{M}
$$

The rate-limiting step provided by the rate of (R16). The reactions (R17) and (R18) are cycling reactions between $\mathrm{NO}_{2}, \mathrm{NO}_{3}$, and
$\mathrm{N}_{2} \mathrm{O}_{5}$. The heterogeneous reaction (R 13) provides a chemical destruction for $\mathrm{N}_{2} \mathrm{O}_{5}$ and NO_{x} as well as a chemical production for HNO_{3}. The rate of (R13) is dependent upon the reaction coefficient of (R13) and the background concentration of $\mathrm{N}_{2} \mathrm{O}_{5}$ shown in Figure 13. During winter the background concentration of $\mathrm{N}_{2} \mathrm{O}_{5}$ is much higher than during summer, and a large decrease in the $\mathrm{N}_{2} \mathrm{O}_{5}$ and NO_{x} concentrations is expected. Figure 14 shows that in northern middle to high latitudes, the heterogeneous conversion of $\mathrm{N}_{2} \mathrm{O}_{5}$ to HNO_{3} plays a very important role during winter. In December the decrease in northern hemispheric $\mathrm{N}_{2} \mathrm{O}_{5}$ is $\sim 95 \%$, and the decreases in NO_{x} is ~ 70 to 80% in the Northern Hemisphere, while, in June, the decrease in $\mathrm{N}_{2} \mathrm{O}_{5}$ is ~ 50 to 70%, and in NO_{x} is ~ 10 to 15% (see Figure 15). Since tropospheric ozone is produced by the oxidation of hydrocarbons and CO catalyzed by hydrogen oxide radicals $\left(\mathrm{HO}_{\mathrm{x}}=\mathrm{OH}+\mathrm{HO}_{2}\right)$ and nitrogen oxide radicals $\left(\mathrm{NO}_{\mathrm{x}}=\mathrm{NO}+\mathrm{NO}_{2}\right)$, changes in NO_{x} in the troposphere lead to changes in the production of O_{3}. At midlatitudes in the Northern Hemisphere the decrease in $\mathrm{NO}_{\mathrm{x}}(10$ to 15% reduction) in June produces an 8 to 10% ozone reduction

Figure 16. (top) Zonally-averaged reaction coefficient for $\mathrm{CH}_{2} \mathrm{O}$ on sulfate aerosols ($1 / \mathrm{s}$), the ratio of the gas-phase reactions (R 19), (R 20), and (R 21) to the (middle) heterogeneous reaction (R 13), and (bottom) $\mathrm{CH}_{2} \mathrm{O}$ mixing ratio (pptv) in June.

Figure 17. Calculated changes (percent) due to the hetero-geneous chemical reaction of $\mathrm{CH}_{2} \mathrm{O}$ with uptake coefficient of $\gamma=0.022$ on sulfate aerosols for (top) $\mathrm{CH}_{2} \mathrm{O}$ and (bottom) HO_{2} in June.
(see Figure 15). However, in December, although a large decrease in NO_{x} is calculated (70 to 80%), the change in O_{3} is $\sim 10 \%$ because the oxidation of hydrocarbons and CO is small (see Figure 14). The calculation by Dentener and Crutzen [1993] suggests a very large decrease (80%) in NO_{x} in the lower troposphere during winter due to this heterogeneous process, which is consistent with our calculation, but the change in O_{3} (25% decrease) is some what larger than our calculation.

4.5. Reaction of $\mathrm{CH}_{2} \mathrm{O}$ on Sulfate Aerosols

Photolysis of formaldehyde $\left(\mathrm{CH}_{2} \mathrm{O}\right)$ provides a source of HO_{x} radicals. Field measurements show that $\mathrm{CH}_{2} \mathrm{O}$ concentrations
calculated from gas-phase models have a tendency to overestimate the observed $\mathrm{CH}_{2} \mathrm{O}$ at Mauna Loa, Hawaii [Liu et al., 1992]. Reaction of $\mathrm{CH}_{2} \mathrm{O}$ in sulfate aerosols has been proposed as a possible explanation [Chatfield, 1994]. The MOZART calculation of $\mathrm{CH}_{2} \mathrm{O}$ without the reaction of $\mathrm{CH}_{2} \mathrm{O}$ on sulfate aerosols tends to overestimate the observed concentrations of $\mathrm{CH}_{2} \mathrm{O}$ in the continental boundary layer during summer [Hauglustaine et al., 1998]. The uptake of gas-phase $\mathrm{CH}_{2} \mathrm{O}$ by sulfate aerosol particles has been measured as a function of temperature and acid concentration by Jayne et al. [1996]. Their measurements show that the uptake coefficient of $\mathrm{CH}_{2} \mathrm{O}$ on sulfate aerosols varies from 0.01 to 0.022 according to acid concentrations and temperatures. These uptake coefficients should

Figure 18. Same as Figure 17, but in December.

Changes(\%) from $\mathrm{CH} 2 \mathrm{O}+$ sulfate reaction (DEC.)

Figure 19. Same as Figure 17, but in December.
be regarded as solubility-determined upper limits, so that the calculated reduction in the $\mathrm{CH}_{2} \mathrm{O}$ concentration should be considered as upper limits.

Without the heterogeneous uptake of $\mathrm{CH}_{2} \mathrm{O}$ on sulfate aerosols, $\mathrm{CH}_{2} \mathrm{O}$ would be destroyed by
(R19)

$$
\mathrm{CH}_{2} \mathrm{O}+\mathrm{h} \nu \rightarrow \mathrm{CO}+\mathrm{H}_{2}
$$

(R20)

$$
\mathrm{CH}_{2} \mathrm{O}+\mathrm{h} \mathrm{\nu} \rightarrow \mathrm{CO}+2 \mathrm{HO}_{2},
$$

(R21)

$$
\mathrm{CH}_{2} \mathrm{O}+\mathrm{OH} \rightarrow \mathrm{CO}+\mathrm{HO}_{2}+\mathrm{H}_{2} \mathrm{O} .
$$

Reaction (R20) leads to the production of HO_{x}. With the heterogeneous uptake of $\mathrm{CH}_{2} \mathrm{O}$ into sulfate aerosols, the HO_{x}
concentrations are reduced. Figure 16 shows that the rate of heterogeneous reaction of $\mathrm{CH}_{2} \mathrm{O}$ is highest (with a uptake coefficient of 0.022) at northern midlatitudes in the boundary layer in June, where the ratio of the rate of the gas-phase reactions (R19), (R20), and (R21) to the rate of the heterogeneous reaction (R14) is significantly less than one, and hence heterogeneous reaction (R14) plays a very important role in this region. As a result, the concentration of $\mathrm{CH}_{2} \mathrm{O}$ is reduced by 60% and HO_{2} is reduced by 10% in this region in June (see Figure 17). Furthermore the effect of (R14) on $\mathrm{CH}_{2} \mathrm{O}$ and HO_{x} has a very strong seasonal variation. As indicated in Figure 18, in December, the rate of heterogeneous reaction of $\mathrm{CH}_{2} \mathrm{O}$ decreases due to the

Figure 20. Calculated changes in O_{3} (percent) due to the heterogeneous chemical reaction of O_{3} on soot with (top) uptake coefficient of 3×10^{-3} and (bottom) uptake coefficient of 7×10^{-5} in June.
smaller sulfate aerosol loading in northern midlatitudes in the boundary layer. However, the rates of the gas-phase photochemical reactions (R19), (R20), and (R21) are also significantly reduced during winter in this region. As a result, the heterogeneous reaction (R14) plays a very important role in the Northern Hemisphere during winter, producing a 90% decrease in $\mathrm{CH}_{2} \mathrm{O}$ and a 10% decrease in HO_{2} in northern middle and high latitudes (see Figure 19). With a lower uptake coefficient for $\mathrm{CH}_{2} \mathrm{O}(\gamma=0.011)$, the changes in $\mathrm{CH}_{2} \mathrm{O}$ and HO_{2} are slightly reduced, but the impact of (R14) remains important with reductions in $\mathrm{CH}_{2} \mathrm{O}$ and HO_{2} of 50 and 8% in northern midlatitudes in the boundary layer during June.

4.6. Reaction of O_{3} on Black Carbon

The effects of O_{3} uptake by black carbon particles on the tropospheric ozone budget have not yet been addressed by global chemical models. On the basis of laboratory studies, Fendel et al. [1995] and Rogaski et al. [1997] have shown that the uptake coefficient for ozone on black carbon particles occurs with an uptake coefficient of the order of 2×10^{-4} to 3.3×10^{-3}. On the other hand, Saathoff [1999] shows the reaction coefficient is only on the order of 7×10^{-5}. The reason for the smaller reaction coefficients is that their measurements were made over a longer timescale than in the previous studies, and thus the sites on the surface of soot

Table 5. Summary of the Effects of Heterogeneous Reactions on Chemical Oxidants Calculated by the Model at 5 km in June ${ }^{\text {a }}$

Reactions		Changes, \%		
		$45^{\circ} \mathrm{N}$	Equator	$45^{\circ} \mathrm{S}$
June				
(1) $\mathrm{N}_{2} \mathrm{O}_{5}+$ sulfate	NO_{x}	-7	-2	-2
$(\gamma=0.1)$	HNO_{3}	8	0	-17
	O_{3}	-7	-2	-2
$\begin{aligned} & \text { (2) } \mathrm{HO}_{2}+\text { sulfate } \\ & (\gamma=0.5) \end{aligned}$	HO_{2}	-10	-1	-6
	OH	-11	-2	-7
	O_{3}	-3	-1	-1
(3) $\mathrm{CH}_{2} \mathrm{O}+$ sulfate				
$(\gamma=0.011)$	$\mathrm{CH}_{2} \mathrm{O}$	-31	-8	-25
	HO_{2}	-7	-3	-6
December				
$\begin{aligned} & \text { (1) } \mathrm{N}_{2} \mathrm{O}_{5}+\text { sulfate } \\ & (\gamma=0.1) \end{aligned}$	NO_{x}	-73	-3	-6
	HNO_{3}	30	-4	-4
	O_{3}	-11	-3	-2
(2) $\mathrm{HO}_{2}+$ sulfate ($\gamma=0.5$)	HO_{2}	-9	0	-1
	OH	-16	-5	-7
	O_{3}	0	0	-2
(3) $\mathrm{CH}_{2} \mathrm{O}+$ sulfate				
$(\gamma=0.011)$	$\mathrm{CH}_{2} \mathrm{O}$	-6	-9	-46
	HO_{2}	-6	-5	-12

${ }^{\text {a }}$ The values represent the zonally averaged changes (percent) in the indicated oxidant when heterogeneous reactions are included with the gas-phase chemistry only.
are deactivated as suggested by Aumount et al. [1999]. The uptake coefficient for O_{3} on soot particles is relatively low compared to the uptake coefficient of HO_{2} and $\mathrm{N}_{2} \mathrm{O}_{5}$ on sulfate aerosols, and compared to the uptake of HNO_{3} on soot reactions. However, since the destruction of O_{3} due to gas-phase reactions in the lower troposphere is relatively slow (weeks to months) [Liu, 1988], the heterogeneous reaction of O_{3} on soot could potentially enhance the destruction of O_{3} in the lower troposphere. We have used the uptake coefficient of 3.3×10^{-3} for a upper limit value and 7×10^{-5} for a lower limit value for the reaction of O_{3} on soot in the model. Only hydrophobic soot surface area will be used for this reaction. Once the soot surface is coated by other aerosols, the reaction will not take place.

Figure 20 shows the impact of this reaction on O_{3} concentrations. If the high value of the uptake coefficient ($\gamma=$ 3×10^{-3}) is adopted, the O_{3} destruction rate at midlatitudes and high latitudes of the Northern Hemisphere is dominated by the heterogeneous reaction with black carbon, producing very large O_{3} destruction in the lower troposphere. The maximum reduction in O_{3} concentration reaches 15% in June (see Figure 20 (top)). However, with the low value of the uptake coefficient $(\gamma=$ 7×10^{-5}), the decrease in the O_{3} concentration is modest. The maximum O_{3} reduction is 3 to 4% in midlatitudes to high latitudes of the Northern Hemisphere (see Figure 20 (bottom)). Because this calculation suggests that the effect of the soot surface reaction on O_{3} depends strongly upon the uptake coefficient, further laboratory measurements for this reaction are needed.

5. Summary

A global interactive chemical and aerosol model has been developed to study the distribution of sulfate and soot aerosol particles and their effects on tropospheric oxidants. The simulated
global sulfate aerosol distributions and seasonal variation have been compared with observations. The seasonal variation of sulfate aerosols is in agreement with measurements, except in the Arctic region. The calculated vertical profiles of sulfate aerosols agree with the observations over North America. In the case of black carbon, the calculated surface distribution is in fair agreement with observations. We have conducted the following studies to calculate the potential effects of aerosols on atmospheric chemical constituents; (1) the impact on the oxidant level of the chemical conversion of SO_{2} to $\mathrm{SO}_{4}{ }^{-}$; (2) the effects of $\mathrm{N}_{2} \mathrm{O}_{5}, \mathrm{HO}_{2}$, and $\mathrm{CH}_{2} \mathrm{O}$ reactions reactions on chemical composition taking place on sulfate aerosols. The effect of heterogeneous reactions on tropospheric oxidants at different regions is briefly summarized in Table 5. The results indicate that with an uptake coefficient of 0.5 , the heterogeneous reaction of HO_{2} on the surface of sulfate aerosols produces a significant loss of HO_{2} and OH . The largest reduction in the OH abundance occurs at high northern latitudes in the lower troposphere, with a 10% decrease during summer and a 15% decrease during winter. However, this result should be regarded as an upper limit estimation. The $\mathrm{N}_{2} \mathrm{O}_{5}$ reaction on the surface of sulfate aerosols produces a 80% reduction of NO_{x} at midlatitudes to high latitudes during winter. Because ozone production efficiency is low in winter, this decrease in NO_{x} leads to less than 10 percent decrease in ozone in the model. The heterogeneous reaction of $\mathrm{CH}_{2} \mathrm{O}$ on sulfate aerosols produces a significant decrease in the concentrations of $\mathrm{CH}_{2} \mathrm{O}$ and HO_{2}. Further laboratory measurements of the reaction coefficients are needed to reduce the uncertainties on the calculated effects of heterogeneous reactions on tropospheric oxidants.

Acknowledgments. The authors are grateful to John Orlando and William Collins for useful comments on the manuscript. The work of X. Tie and Guy Brasseur is partially supported by DOE Atmospheric Chemistry Program under contract DE-AI05-98ER62579. Louisa Emmons is supported by NASA under interagency-agreement L9301. The National Center for Atmospheric Research is operated by the University Corporation for Atmospheric Research under the sponsorship of the National Science Foundation.

References

Andreae, M. O., and P.J. Crutzen, Atmospheric aerosols: biogeochemical sources and role in atmospheric chemistry, Science, 276, 1052-1058, 1997.

Andreae, M.O., T.W. Andreae, R.J. Ferek, and H. Raemdonck, Long range transport of soot carbon in the marine atmosphere, Sci. Total Environ., 36, 73-80, 1984.
Aumont, B., S. Madronich, M. Ammann, M. Kalberer, U. Baltensperger, D. Hauglustaine, and F. Brocheton, On the $\mathrm{NO}_{2}+$ soot reaction in the atmosphere, J. Geophys. Res., 104, 1729-1736, 1999.
Atkinson R., D.L. Baulch, R.A. Cox, R.F. Hampson, J.A. Kerr, and J. Troe, Evaluated kinetic and photochemical data for atmospheric chemistry: Supplement IV, Atmos. Environ., Part A, 26, 1187-1230, 1992.

Barth, M.C., P.J. Rasch, J.T.Kiehl, C.M. Benkovitz, and S.E. Schwartz, Sulfur chemistry in the NCAR CCM: Description, evaluation, features and sensitivity to aqueous chemistry, J. Geophys. Res., 105, 13871415, 2000.
Benkovitz, C.M., C.M. Berkowitz, R.C. Easter, S. Nemesure, R. Wagener, S. E. Schwartz, Sulfate over the North Atlantic and adjacent continental regions: Evaluation for October and November 1986 using a three-dimensional model driven by observation-derived meteorology, J. Geophys. Res., 99, 20,725-20,756, 1994.

Penkovitz, C.M., M.T. Scholtz, J. Pacyna, L. Tarrason, J. Diagnon, E.C. Voldner, P.A. Spiro, J.A. Logan, and T.E. Graedel, Global gridded inventories of anthropogenic emissions of sulfur and nitrogen, J. Geophys. Res., 101, 29,239-29,253, 1996.
Blake, D.F., and K. Kato, Latitudinal distribution of black carbon soot in
the upper troposphere and lower stratosphere, J. Geophys. Res., 100, 7195-7202, 1995.
Bond, T.C., R.J. Charlson, and J. Heintzenberg, Quantifying the emission of light-absorbing particles: Measurements tailored to climate studies, Geophys. Res. Lett., 25, 337-340, 1998.
Brasseur, G. P., D. A. Hauglustaine, S. Walters, J. F. Müller, P. Rasch, C. Granier, and X. Tie, MOZART: A global chemical transport model for ozone and related chemical tracers, 2. Model results and evaluations, 1, Model description, J. Geophys. Res., 103, 28,26528,289, 1998.
Brasseur, G. P., C. Granier, and S. Walters, Future changes in stratospheric ozone and the role of heterogeneous chemistry, Nature, 348, 626-628, 1990.
Cantrell, C.A., R.E. Shetter, T.M. Gilpin, J.G. Calvert, F.L. Eisele, and D.J. Tanner, Peroxy radical concentrations measured and calculated from trace gas measurements in the Mauna Loa Observatory Photochemistry Experiment 2, J Geophys. Res., 101, 14,653-14,664, 1996.

Charlson, R.J., J. Langner, H. Rodhe, C.B. Leovy, and S.G. Warren, Perturbation of the northern hemisphere radiative balance by backscattering from anthropogenic sulfate aerosols, Tellus, Ser. B, 43(4), 152-163, 1991.
Chatfield, R.B., Anomalous $\mathrm{HNO}_{3} / \mathrm{NO}_{x}$ ratio of the remote tropospheric air: Conversion of nitric acid to formic acid and NO_{x} ? Geophys. Res. Lett., 21, 2705-2708, 1994.
Chin, M., D. Jacob, G. Gardner, F. Foreman, S. Michael, A. Peter, L. Dennis, A global three- dimensional model of tropospheric sulfate, J. Geophys. Res., 101, 18,667-18,690, 1996.
Choi, W., and M. T. Leu, Nitric acid uptake and decomposition on black carbon (soot) surface: Its implications for the upper troposphere and lower stratosphere, J. Phys. Chem. A, 102, 7618-7630, 1998.
Cooke, W.F., and J.J.N. Wilson, A global black carbon aerosol model, J Geophys. Res., 101, 19,395-19,409, 1996.
Crutzen, P.J., The possible importance of OCS for the sulfate layer of the stratosphere, Geophys. Res. Lett., 3, 73-76, 1976.
DeMore, W.B, et al., Chemical kinetics and photochemical data for use in stratospheric modeling, JPL Publ. 97-4, Jet Propul. Lab., Pasadena, Calif., 1997.
Dentener, F.J., and P.J. Crutzen, Reaction of $\mathrm{N}_{2} \mathrm{O}_{5}$ on tropospheric aerosols: Impact on the global distributions of $\mathrm{NO}_{\mathrm{x}}, \mathrm{O}_{3}$, and OH, J. Geophys. Res., 98, 7149-7163, 1993.
Dentener, F.J., and P.J. Crutzen, A three-dimensional model of the global ammonia cycle, J. Atmos. Chem. 19, 331-369, 1994.
Dentener, F.J., and P.J. Crutzen, Role of mineral aerosol as a reactive surface in the global troposphere, J. Geophys. Res., 101, 22,86922,889, 1996.
Dentener, F. J., C. R. Carmichael, Gregory, Y. Zhang, L. Yang, J. Lelieveld, and P. J. Crutzen, Role of mineral aerosol as a reactive surface in the global troposphere, J. Geophys. Res., 98, 22,869-22,889, 1996.

Fahey, D. W., et al., In situ measurements constraining the role of sulfate aerosols in mid-latitude ozone depletion, Nature, 363, 509-514, 1993.
Feichter, J., E. Kjellstrom, H. Rodhe, F. Dentener, J. Lelieveld, and G.-J. Roelofs, Simulation of the tropospheric sulfur cycle in a global climate model, Atmos. Environ., 30, 1693-1707, 1996.
Fendel, W., and A. S. Ott, Ozone depletion potential of carbon aerosol particles, J. Aerosol Sci., 24, 317-318, 1993.
Fendel, W., D. Matter, H. Burtscher, and A. Schmidt-Ott, Interaction between carbon or iron aerosol particles and ozone, Atmos. Envrion., 29, 967-973, 1995.
Ferek, R.J., J.S. Reid, and P.V. Hobbs, Emission factors of hydrocarbons, halocarbons, trace gases and particles from biomass burning in Brazil, J. Geophys. Res., 103, 32,107-32,118, 1988.

Fried, A., B. E. Henry, J.G. Calvert, and M. Mozurkewich, The reaction probability of $\mathrm{N}_{2} \mathrm{O}_{5}$ with sulfuric acid aerosols at stratospheric temperatures and compositions, J. Geophys. Res., 99, 3517-3532, 1994.

George, Ch., J. L. Ponche, Ph. Mirabel, W. Behnke, V. Scheer, and C. Zetsch, Study of the uptake of $\mathrm{N}_{2} \mathrm{O}_{5}$ by water and NaCl solutions, J. Phys. Chem., 98, 8780-8784, 1994.
Giorgi, F., and W.L. Chameides, The rainout parameterization in a photochemical model, J. Geophys. Res., 90, 7872-7880, 1985.
Golden, D.M., and J. Manion, Applications of chemical kinetics, Adv. Chem. Kinet. Dyn., 1, 187-276, 1992.
Goodman, A.L., G.M. Underwood, and V.H. Grassian, Heterogeneous reaction of NO_{2} : Characterization of gas-phase and adsorbed products
from the reaction, $2 \mathrm{NO}_{2}(\mathrm{~g})+\mathrm{H}_{2} \mathrm{O}(\mathrm{a}) \rightarrow \mathrm{HONO}(\mathrm{g})+\mathrm{HNO}_{3}(\mathrm{a})$ on hydrated silica particles, J. Phys. Chem. A, 103, 7217-7223, 1999.
Hack, J. J., B. A. Boville, B. P. Briegleb, J. T. Kiehl, P. J. Rasch, and D. L. Williamson, Description of the NCAR community climate model $\left(\mathrm{CCm}^{2}\right)$, Tech. Note NCAR/TN- $382+S T R, 108$ pp., Natl. Cent. for Atmos. Res., Boulder, Colo., 1993.
Hagen, D.E., M.B. Trueblood, and P.D. Whitefield, A field sampling of jet exhaust aerosols, Particulate Sci. Tech., 10, 53-63, 1992.
Hanson, D. H., and E.R. Lovejoy, The uptake of $\mathrm{N}_{2} \mathrm{O}_{5}$ onto small sulfuric acid particles, Geophys. Res., Lett., 21, 2401-2404, 1994.
Hanson, D. H., and A. R. Ravishankara, The reaction probability of ClONO_{2} and $\mathrm{N}_{2} \mathrm{O}_{5}$ on 40 to 75% sulfuric acid solutions, J. Geophys. Res., 96, 17,307-17,314, 1991.
Hanson, D. H., and A. R. Ravishankara, Investigation of the reactive and nonreactive processes involving ClONO_{2} and HCl on water and nitric acid doped ice, J. Phys. Chem., 96, 2682- 2691, 1992.
Hauglustaine, D. A., B.A. Ridley, S. Solomon, P.G. Hess, and S. Madronich, $\mathrm{HNO}_{3} / \mathrm{NO}_{x}$ ratio in the remote troposphere during MLOPEX 2: Evidence for nitric acid reduction on carbonaceous aerosols? Geophys. Res. Lett., 23, 2609-2612, 1996.
Hauglustaine, D. A., G.P. Brasseur, S. Walters, P.J. Rasch, J.F. Muller, L.K. Emmons, and M. A. Carroll, MOZART, A global chemical transport model for ozone and related chemical tracers, Model results and evaluations, J. Geophys. Res., 103, 28,291-28,335, 1998.
He, S., and G.R. Carmichael, Sensitivity of photolysis rates and ozone production in the troposphere to aerosol properties, J. Geophys. Res., 104, 26,307-26,324, 1999.
Holtslag, A. A. M., and B. A. Boville, Local versus nonlocal boundarylayer diffusion in a global climate model, J. Clim., 6, 1825-1842, 1993.
Hidy, G. M., Assessment of regional air pollution over the eastern United States: Results from the Sulfate Regional Experiment (SURE), Rep. WMO 538, pp. 65-76, World Meteorol. Org., Geneva, 1979.
Hofmann, D. J., and S. Solomon, Ozone destruction through heterogeneous chemistry following the eruption of El Chichón, J. Geophys. Res., 94, 5029-5041, 1989.
Hofmann, D. J., S. J. Oltmans, W. D. Komhyr, J. M. Harris, J. A. Lathrop, A. O. Langford, T. Deshler, B. J. Johnson, A. Torres, and W. A. Matthews, Ozone loss in the lower stratosphere over the United States in 1992-1993: Evidence for heterogeneous chemistry on the Pinatubo aerosol, Geophys. Res. Lett., 21, 65-68, 1994.
Hu, J.H., and J.P.D. Abbatt, Reaction probabilities for $\mathrm{N}_{2} \mathrm{O}_{5}$ hydrolysis on sulfate acid and ammonium sulfate aerosols at room temperature, J. Phys. Chem. A, 101, 871-878, 1997.
Jacob, D.J., Heterogeneous chemistry and tropospheric ozone, Atmos. Environ., 34, 2131-2159, 2000.
Jayne, J.T., D.R. Worsnop, C.E. Kolb, E. Schwartz, and P. Davidovits, Uptake of gas-phase formaldehyde by aqueous acid surfaces, J. Phys. Chem., 100, 8015-8022, 1996.
Kasibhatla, P., W.L. Chameides, and J.S. John, A three-dimensional global model investigation of seasonal variations in the atmospheric burden of anthropogenic sulfate aerosols, J. Geophys. Res., 102, 37373759, 1997.
Kiehl, J.T., and B.P. Briegleb, The relative roles of sulfate aerosols and greenhouse gases in climate forcing, Science, 260, 311-314, 1993.
Kleffmann, J., K.H. Becker, M. Lackhoff, and P. Wiesen, NO_{2} conversion processes on carbonaceous surfaces, paper presented at Sixth Scientific Conference of the International Global Atmospheric Chemistry Project (IGAC), Bologna, Italy, Sept. 13-17, 1999.
Kolb, C.E., D.R. Worsnop, M.S. Zahniser, P. Davidovits, L.F. Keyser, M.T. Leu, M.J. Molina, D.R. Hanson, and A.R. Ravishankara, Laboratory studies in atmospheric heterogeneous chemistry, in Progress and Problems in Atmospheric Chemistry, edited by J.R. Baker, pp. 771-875, World Sci. River Edge, N. J., 1995.
Leaitch, R., Vertical sulfuric profiles from aircraft used in COSAM, paper presented at WCRP/IGAC Workshop, Halifax, Nova Scotia, Canada, Oct. 19-21, 1998.
Lelieveld, J., The role of clouds in tropospheric photochemistry, Ph.D. thesis, Univ. Utrecht, Utrecht, Netherlands, 1990.
Lelieveld, J., and P. Crutzen, Influences of cloud photochemical processes on tropospheric ozone, Nature, 343, 227-233, 1990.
Levine, S.Z., and S.E. Schwartz, In-cloud and below-cloud scavenging of acid vapor, Atmos. Environ., 16, 1725-1723, 1982.
Liao, H., Y.L. Yung, and J.H. Seinfeld, Effects of aerosols on the tropospheric photolysis rates in clear and cloudy atmospheres, J. Geophys. Res., 104, 23,697-23,707, 1999.
Liousse, C., H. Cachier, and S.G. Jennings, Optical and thermal
measurements of black carbon content in different environments: Variation of the specific attention cross-section, sigma (σ), Atmos. Environ., 27, 1203-1211, 1993.
Liousse, C., J.E. Penner, C. Chang, J.J. Walton, H. Eddleman, and H. Cachier, A global three- dimensional model study of carbonaceous aerosols, J. Geophys. Res., 101, 19,411-19,432, 1996.
Liu, S. C., et al., A study of the photochemistry and ozone budget during the Mauna Loa Observatory Photochemistry Experiment, J. Geophys. Res., 97, 10,463-10,471, 1992.
Longfellow, C.A., A.R. Ravishankara, and D.R. Hanson, Reactive uptake on hydrocarbon soot: Focus on NO_{2}, J. Geophys. Res., 104, 13,83313,840, 1999.
McCormick, M.P., and T.J. Swissler, Stratospheric aerosol mass and latitudinal distribution of the El Chichón eruption for October 1982, Geophys. Res. Lett., 10, 877-880, 1983.
Mozurkewich, M., P. McMurry, and A. Cupta, Mass accommodation coefficient for HO_{2} radicals on aqueous particles, J. Geophys. Res., 92, 4163-4170, 1987.
Ogren, J.A., and R.J. Charlson, Wet deposition of elemental carbon and sulfate in Sweden, Tellus, Ser. B, 36, 262-271, 1984.
Parungo, F., C. Nagamoto, M.Y. Zhou, A.D.A. Hansen, and J. Harris, Aeolian transport of aerosol black carbon from China to the ocean, Atmos. Environ., 28, 3251-3260, 1994.
Penner, J.E., H. Eddleman, and T. Novakov, Towards the development of a global inventory for black carbon emissions, Atmos. Environ., Part A, 27, 1277-1295, 1993.
Penner, J.E., et al., Quantifying and minimizing uncertainty of climate forcing by anthropogenic aerosols, Bull. Am. Meteorol. Soc., 75(3), 375-400, 1994.
Perry, R.H., and D. Green, Perry's Chemical Engineers Handbook, pp. 3285, McGraw-Hill, New York, 1984.
Pitari, G., and V. Rizi, An estimate of the chemical and radiative perturbation of stratospheric ozone following the eruption of Mt. Pinatubo, J. Atmos. Sci., 50, 3260-3276, 1993.
Rasch, P.J., and D.L. Williamson, Sensitivity of a general circulation model climate to the moisture transport formulation, J. Geophys. Res., 96, 13,123-13,137, 1991.
Ravishankara, A.R., Heterogeneous and multiphase chemistry in the troposphere, Science, 276, 1058-1065, 1997.
Robinson, G.N., D.R. Worsnop, J.T. Jayne, C.E. Kolb, and P. Davidovits, Heterogeneous uptake of ClONO_{2} and $\mathrm{N}_{2} \mathrm{O}_{5}$ by sulfuric acid solutions, J. Geophys. Res., 102, 3583-3601, 1997.

Rodriguez, J.M., M.K.W. Ko, and N.D. Sze, The role of heterogeneous conversion of $\mathrm{N}_{2} \mathrm{O}_{5}$ on sulfate aerosols in global ozone losses, Nature, 352, 134-137, 1991.
Rogaski, C.A., et al., Reactive uptake and hydration experiments on amorphous carbon treated with $\mathrm{NO}_{2}, \mathrm{SO}_{2}, \mathrm{O}_{3}, \mathrm{HNO}_{3}$, and $\mathrm{H}_{2} \mathrm{SO} 4$, Geophys. Res. Lett., 24, 381-384, 1997.
Rossi, M.J., F.F. Enter, K. Tabor, F. Clothes, and L. Glitzier, Heterogeneous reactions of nitrogen oxides $\left(\mathrm{NO}_{2}, \mathrm{~N}_{2} \mathrm{O}_{5}, \mathrm{HNO}_{3}\right.$, ClONO_{2}) with surfaces representative of atmospheric aerosol, in Heterogeneous and Liquid Phase Processes: Laboratory Studies Related to Aerosols and Clouds, edited by P. Warneck, pp. 213-220, Springer-Verlag, New York, 1995.
Saathoff, H., S. Kamm, O. Mohler, K-H., Naumann, and U. Schurath, The interaction of soot aerosol with $\mathrm{O}_{3}, \mathrm{NO}_{2}, \mathrm{NO}_{3}, \mathrm{~N}_{2} \mathrm{O}_{5}, \mathrm{HNO}_{3}$, and HO_{2}, paper presented at Sixth Scientific Conference of the International Global Atmospheric Chemistry Project (IGAC), Bologna, Italy, Sept. 13-17, 1999.
Saylor, R. D., An estimate of the potential significance of heterogeneous
loss to aerosols as an additional sink for hydroperoxyl radicals in the troposphere, Atmos. Environ., 31, 3653-3658, 1997.
Schwartz, S.E., Mass-transport considerations pertinent to aqueous phase reactions of gases in liquid water clouds, in Chemistry of Multiphase Atmospheric System, NATO ASI Ser., edited by W. Jaeschke, pp. 415472, Springer, New York, 1986.
Seinfeld, J. H., Atmospheric Chemistry and Physics of Air Pollution, John Wiley, New York, 1986.
Solomon, S., R. R. Garcia, F. S. Rowland, and D. J. Wuebbles, On the depletion of Antarctic ozone, Nature, 321, 755-758, 1986.
Tabor, K., L. Gutzwiller, and M. Rossi, The heterogeneous interaction of NO_{2} with amorphous carbon, Geophys. Res. Lett., 20, 1431-1434, 1993.

Thlibi, J., and J.C. Petit, A study of the NOy/soot interaction in the temperature range $303-1233 \mathrm{~K}$, paper presented at International Scientific Colloquium, Cologne, Germany, April 18-20, 1994.
Thomas, E.R., G.J. Frost, and Y. Rudich, Reactive uptake of ozone by proxies for organic aerosols: Surface-bound and gas-phase products, J. Geophys. Res., 106, 3045-3056, 2001.
Tie, X., X. Lin, and G. P. Brasseur, Two-dimensional coupled dynamical/chemical/ microphysical simulation of global distribution of El Chichon volcanic aerosols, J. Geophys. Res., 99, 16,779-16,792, 1994a.
Tie, X., G. P. Brasseur, B. Briegleb, and C. Granier, Two-dimensional simulation of Pinatubo aerosol and its effect on stratospheric ozone, J. Geophys. Res., 99, 20,545-20,562, 1994b.
Tie, X., G. P. Brasseur, C. Granier, A. De Rudder, and N. Larsen, Model study of polar stratospheric clouds and their effects on stratospheric ozone, Part I, Model results, J. Geophys. Res., 101, 12,575-12,584, 1996.

Turco, R.P., P. Hamill, O.B. Toon, R.C. Witten, and C.S. Kiang, A onedimensional model describing aerosol formation and evolution in the stratosphere, I, Physical processes and numerical analogs, J. Atmos. Sci., 36, 699-717, 1979.
Van Doren, J.M., L.R. Watson, P. Davidovits, D.R. Worsnop, M.S. Zahniser, and C.E. Kolb, Uptake on $\mathrm{N}_{2} \mathrm{O}_{5}$ and HNO_{3} by aqueous sulfuric acid droplets, J. Phys. Chem., 95, 1684-1689, 1991.
Visconti, G.M., Verdecchia, and G. Pitari, A comparison of lidar data and two-dimensional simulation of dust transport from the eruption of El Chichón, J. Atmos. Sci., 45, 1097-1109, 1988.
Ward, D. E., W.M. Hao, R.E. Babbitt, R.W. Shea, J.B. Kauffman, C.O. Justice, Effect of fuel composition on combustion efficiency and emission factors for African savanna ecosystems, J. Geophys. Res., 101, 23,569-23,576, 1996.
Wesely, M.L., and B.B. Hicks, A review of the current status of knowledge on dry deposition, Atmos. Environ., 34, 2261-2282, 2000.
Zhang, R.Y., M.T. Leu, and L.F. Keyser, Sulfuric acid monohydrate: Formation and heterogeneous chemistry in the stratosphere, J. Geophys. Res., 100, 18,845-18.854, 1995.
G. Brasseur, Max-Planck-Institute of Meteorology, 20146 Hamburg, Germany.
L. Emmons, D. Kinnison, and X. Tie, National Center for Atmospheric Research, Boulder, CO 80303.
L. Horowitz, Princeton University, Princeton, NJ 08542-0308.
(Received September 12, 2000; revised March 23, 2001;
accepted April 24, 2001.)

[^0]: ${ }^{\text {l }}$ Now at Max-Planck-Institute of Meteorology, Hamburg, Germany.

[^1]: ${ }^{\text {a }}$ Concentrations are in pptv.

