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Abstract Halogenated very short lived substances (VSLS) affect the ozone budget in the atmosphere.
Brominated VSLS are naturally emitted from the ocean, and current oceanic emission inventories vary
dramatically. We present a new global oceanic emission inventory of Br‐VSLS (bromoform and
dibromomethane), considering the physical forcing in the ocean and the atmosphere, as well as the ocean
biogeochemistry control. A data‐oriented machine‐learning emulator was developed to couple the air‐sea
exchange with the ocean biogeochemistry. The predicted surface seawater concentrations and the surface
atmospheric mixing ratios of Br‐VSLS are evaluated with long‐term, global‐scale observations; and the
predicted vertical distributions of Br‐VSLS are compared to the global airborne observations in both boreal
summer and winter. The global marine emissions of bromoform and dibromomethane are estimated
to be 385 and 54 Gg Br per year, respectively. The new oceanic emission inventory of Br‐VSLS is more skillful
than the widely used top‐down approaches for representing the seasonal/spatial variations and the
annual means of atmospheric concentrations. The new approach improves the model predictability for the
coupled Earth systemmodel and can be used as a basis for investigating the past and future ocean emissions
and feedbacks under climate change. This model framework can be used to calculate the bidirectional
oceanic fluxes for other compounds of interest.

Plain Language Summary Halogen atoms released from the man‐made, long‐lived
ozone‐are the major cause of the stratospheric ozone depletion. Recent studies found that natural
bromine‐containing very short lived substances are of particular importance for the ozone radiative forcing
in the lower stratosphere. These bromine‐containing short‐lived ozone‐depleting substances are naturally
produced from phytoplankton in seawater and released into the atmosphere. The past decade has seen
increased applications of machine‐learning techniques in climate‐related research. In this work, we use a
data‐oriented machine‐learning algorithm to calculate the production of bromine‐containing short‐lived
substances in the ocean, representing a fairly accurate and computationally efficient solution for addressing
future climate predictions.

1. Introduction

Brominated very short lived substances (Br‐VSLS), including bromoform (CHBr3) and dibromomethane
(CH2Br2), are important precursors of reactive bromine species in the atmosphere. The multiphase chem-
istry involving reactive bromine species affects ozone and mercury in both the troposphere and the strato-
sphere (Saiz‐Lopez et al., 2012; Saiz‐Lopez & von Glasow, 2012; Schmidt et al., 2016; Sherwen et al., 2017;
Wales et al., 2018; Wang et al., 2015; Wang, McNamara, et al., 2019) and exert a particularly strong ozone
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radiative impact in the lower stratosphere (Engel et al., 2019; Hossaini et al., 2015; Navarro et al., 2015;
Salawitch et al., 2005). Br‐VSLS are naturally produced in seawater, and the ocean is thought to be the
dominant global source through air‐sea exchange (Butler et al., 2007; Carpenter & Liss, 2000; Quack &
Wallace, 2003; Yokouchi et al., 2017). The natural synthesis mechanisms of Br‐VSLS in seawater remain
poorly understood but are mainly related to phytoplankton and photosynthetic processes in the seawater
(Moore et al., 1996; Lin & Manley, 2012; Liu, Yvon‐Lewis, Thornton, Butler, et al., 2013; Liu et al., 2015;
Shibazaki et al., 2016; Hughes & Sun, 2016).

Current oceanic emission inventories of Br‐VSLS vary dramatically. For example, the global annual oceanic
emissions of CHBr3 range from 72–238 Gg Br per year in bottom‐up inventories (Lennartz et al., 2015;
Stemmler et al., 2015; Ziska et al., 2013) to 425–840 Gg Br per year in the top‐down (observationally derived)
inventories (Butler et al., 2007; Liang et al., 2010; Ordóñez et al., 2012; Quack & Wallace, 2003; Warwick
et al., 2006). These inventories show particularly large discrepancies in the high‐latitude regions (Hossaini
et al., 2013, 2016). The top‐down inventories, although providing reasonable constraints on the stratospheric
source gas injection (Engel et al., 2019; Hossaini et al., 2016), may have limited predictability of future
climate variations and feedbacks, as the emission fluxes (derived from atmospheric observations) have not
been designed to provide information on how these fluxes would respond to changes in local conditions
or external forcing. Ordóñez et al. (2012) derived global marine Br‐VSLS emissions for chemistry‐climate
models by scaling the observed fluxes to the chlorophyll‐a observations (climatology from the SeaWiFS satel-
lite), which is an assumed proxy for the ocean biogeochemical production of these compounds. However, in
situ observations found no robust relationships between the Br‐VSLS and chlorophyll (Carpenter et al., 2009;
Liu, Yvon‐Lewis, Thornton, Campbell, et al., 2013). Efforts have been made to develop bottom‐up emission
inventories, to better quantify the oceanic emissions in the coupled Earth system. Lennartz and colleagues
investigated the global marine emissions of Br‐VSLS (Lennartz et al., 2015) using a modular Earth system
model (Jöckel et al., 2005) with an online air‐sea exchange module (Pozzer et al., 2006), based on the
observationally derived global distributions of the surface seawater Br‐VSLS (Ziska et al., 2013). This coupled
framework is a key step toward a more skillful representation and improved predictability of interactive
emissions within chemistry‐climate models. The surface seawater concentrations, primarily determined
by the ocean biogeochemical and the physical processes in the seawater, set the foundation for the air‐sea
exchange processes. Ziska et al. (2013) conducted pioneer work in producing a global product of the surface
seawater distributions of Br‐VSLS for use in global models. However, the objective mapping approach used
(Ziska et al., 2013) did not adequately represent the complex ocean biogeochemistry control and hence was
unable to fully resolve the seasonal or spatial variations in the natural seawater. Stemmler et al. (2015)
developed a state‐of‐the‐art three‐dimensional ocean biogeochemistry model to simulate the explicit sources
and sinks of CHBr3 in the ocean, yet the potentially important CHBr3 production in coastal waters as well as
from sea ice algae (Carpenter et al., 2007) are not represented. Additionally, to our knowledge, CH2Br2
coupled air‐sea emissions were not simulated (Stemmler et al., 2015).

Machine‐learning and artificial intelligence have proven to be a valuable tool in the Earth system science. To
name a few inspiring applications, Sherwen et al. (2019) and Roshan and DeVries (2017) leveraged existing
satellite or gridded in situ observations and developed new products for model use. Recent years have seen
“online” applications as well. For example, machine‐learning “emulators,” trained by process‐level models
(often computationally expensive) or observations, may be used to replace the (sometimes highly uncertain)
parameterizations (e.g., planetary boundary layer schemes and cloud microphysics schemes) in Earth sys-
tem models (Sobhani et al., 2018). Although common algorithms (e.g., random forest) may be used in the
online (e.g., Sobhani et al., 2018) and offline applications (e.g., Sherwen et al., 2019), the online approach
has advantages: The machine‐learning emulator incorporated into the Earth system model (online) is
coupled to other physical and chemical processes within the Earth system model, therefore will respond
to changes in local conditions or external forcing, and hence may reveal insights into the feedback mechan-
isms. In the aforementioned examples (Roshan & DeVries, 2017; Sherwen et al., 2019), climatologies
(usually monthly) of gridded observations and satellite products are used; therefore, the temporal variations
beyond the climatologies (e.g., decadal, interannual, and daily) or feedback mechanisms cannot be resolved.
Moreover, the offline approaches, trained by present‐day observations, may be prone to systematic biases
when used for future/past projections. The online approaches may be less affected by such biases (if
thoroughly evaluated), since the same variables are used for both training and predicting; therefore, the
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biases would be bypassed. Moreover, the online emulator can be flexible in terms of temporal (e.g., daily and
weekly) and spatial resolution, depending on the temporal and spatial coverage of the in situ observation
and the model resolution.

The future trend of the marine emissions of these ozone‐depleting substances remains unclear. A recent
study examined the future marine emissions of Br‐VSLS under different climate change scenarios, assuming
constant surface seawater concentrations of Br‐VSLS in the future (Ziska et al., 2017). However, anthropo-
genically forced climate change may lead to considerable changes in the ocean biogeochemical states and
primary productivity (Krumhardt et al., 2017; Long et al., 2016). To our knowledge, there has been no
attempt to implement an approach to understand the influence of future changes in the ocean biogeochem-
ical states and the productivity on the marine emissions of Br‐VSLS. A trained machine‐learning emulator
representing the ocean biogeochemistry control, coupled to an Earth system model, may provide insights
into this issue.

In this work, we present a data‐oriented machine‐learning emulator to calculate the global surface seawater
distributions of CHBr3 and CH2Br2 based on ocean biogeochemistry. The calculated present‐day monthly
climatologies of the surface seawater concentrations of CHBr3 and CH2Br2 are evaluated with observations
(HalOcAt data set: Halocarbons in the Ocean and Atmosphere; see Ziska et al., 2013) and used to drive the
air‐sea exchange processes in the global chemistry‐climate model, the Community Atmospheric Model with
chemistry (CAM‐chem). An online air‐sea exchange framework (Wang, McNamara, et al., 2019) was devel-
oped for CAM‐chem, which is used in this work to investigate the marine emissions of Br‐VSLS in a 10‐year
period (2005–2015). The modeled surface atmospheric concentrations of CHBr3 and CH2Br2 are compared
to ground‐based observations from the National Oceanic and Atmospheric Administration/Earth System
Research Laboratory (NOAA/ESRL) global monitoring network (Montzka et al., 2003). The new bottom‐

up oceanic emission inventories of Br‐VSLS provide improved predictability for the seasonal/spatial
variations of these short‐lived ozone‐depleting substances over the widely used top‐down inventories.
Moreover, the modeled vertical distributions of CHBr3 and CH2Br2 are compared to the airborne
observations obtained from the first and the second deployments of the National Aeronautics and Space
Administration (NASA) Atmospheric Tomography Mission (Wofsy et al., 2018). The global marine
emissions of CHBr3 and CH2Br2 are compared with previous studies.

2. Methods

CAM‐chem (Lamarque et al., 2012; Tilmes et al., 2015) is the atmospheric component of the National Center
for Atmospheric Research (NCAR) Community Earth System Model (CESM). In this work, CAM‐chem
(from the publicly released CESM2.1.1) is nudged (Tilmes et al., 2015) to NASAMERRA2meteorology fields
with a horizontal resolution of 0.9° latitude × 1.25° longitude and 56 levels (surface to 3 hPa). The chemistry
scheme is based on that in the CESM2.1.1, which includes a detailed representation of tropospheric and stra-
tospheric chemistry (same as in Tilmes et al., 2015). In addition, the air‐sea exchange module (see section 2.1
for details) and the reactive halogen chemistry (Fernandez et al., 2014; Navarro et al., 2015; Saiz‐Lopez et al.,
2012), are implemented on top of the publicly released CESM2.1.1. Anthropogenic emissions are from the
CoupledModel Intercomparison Project Phase 6 (Hoesly et al., 2018), and emissions from vegetation are cal-
culated using the Model of Emissions of Gases and Aerosols from Nature (Guenther et al., 2012). The model
is spun‐up for 5 years (2000–2004), and the modeled results in 2005–2015 are compared to ground‐based
observations around the globe. In addition, model simulations from another global chemical transport
model, TOMCAT (Chipperfield, 2006), using a number of other oceanic VSLS emission inventories
(Liang et al., 2010; Ordóñez et al., 2012; Warwick et al., 2006; Ziska et al., 2013), are included in this work
for comparison. The TOMCAT simulations (see section 4 for details) are from Hossaini et al. (2013).

2.1. Online Air‐Sea Interface for Soluble Species

The oceanic fluxes of CHBr3 and CH2Br2 are calculated using the Online Air‐Sea Interface for Soluble
Species (OASISS) developed for CESM2 CAM‐chem (Wang, Hornbrook, et al., 2019), which is based on
the widely used two‐layer model framework (Johnson, 2010; Liss & Slater, 1974). In brief, the air‐sea
exchange is described by the air‐side and water‐side transfer velocities (kair and kwater). kair is based on the
NOAA COARE algorithm (Jeffery et al., 2010), with the addition of the still air diffusive flux adjustment
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(Mackay & Yeun, 1983). kwater is based on Nightingale et al. (2000). This OASISS model framework
(Figure 1) is fully coupled with CAM‐chem, calculating the bidirectional fluxes of trace gases considering
the local physical state of the ocean (sea surface temperature, salinity, and waves/bubbles) and the
atmosphere (temperature, pressure, and wind). The surface seawater concentrations of CHBr3 and
CH2Br2 (used to drive the air‐sea exchange) are predicted by a machine‐learning algorithm based on
observed seawater concentrations and other ancillary parameters (section 2.2).

2.2. Decision Trees and Random Forest

This machine‐learning emulator utilizes a random forest regression algorithm provided in the Python Scikit‐
learn package (Pedregosa et al., 2011). Supporting information Figure S1 gives a simple illustration of the
principle of the random forest. The training data set (section 2.3) consists of a number of data records; each
data record contains a dependent variable (in this case, either CHBr3 or CH2Br2) and a number of ancillary
variables. A random forest is the ensemble of a number of decision trees. A decision tree consists of a “root
node,” a number of “split nodes,” and finally a number of “leaf nodes.” At each node (root/split/leaf), the
parent data set is randomly split into two subsets. In this work, the mean square error (MSE) is used as
the error metric to evaluate the split: Each possible split results in a reduction of MSE, and the best split is
made in a way that the reduction of MSE is maximized. The splitting process is continued until a minimum
number of data records are left in a node, or a maximum depth of a tree is reached, and the final nodes are
referred to as leaf nodes. The mean of all values of the dependent variable in a leaf node is the prediction of
this particular tree following a particular path, unless a leaf node contains only one data record, in which
case the value of the dependent variable is the prediction of this tree. The combination of the ancillary vari-
ables in a data record determines how it will “travel through” a decision tree. The random forest prediction
for a particular data record is the mean value of the predictions made by all decision trees. In order to avoid
overfitting, the random forest algorithm in this work used “bootstrap aggregation” or “bagging” approach
(Pedregosa et al., 2011), in which the training data are randomly sampled with replacement from all data
labeled as training, thus increasing the randomness and diversity (Breiman, 2001). To further avoid overfit-
ting, 20% of the entire data set is randomly sampled and used for validation (not involved in the training).

Figure 1. Schematic diagram of the new bottom‐up oceanic emission inventory developed for CESMCAM‐chem, with the
online air‐sea interface for soluble species (OASISS) and the data‐oriented machine‐learning emulator. CESM =
Community Earth System Model; CAM‐chem = Community Atmospheric Model with chemistry; OASISS = Online Air‐
Sea Interface for Soluble Species.
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2.3. Surface Seawater Concentrations Predicted by Machine‐Learning Algorithm

In this work, the monthly global surface seawater concentrations of CHBr3 and CH2Br2 are predicted by a
trained machine‐learning emulator which mimics the ocean biogeochemical control on the synthesis of
these compounds in the seawater. The machine‐learning training data set consists of (i) surface seawater
concentrations of CHBr3 and CH2Br2 observations in the HalOcAt data set, which spans from 1987 to
2011 (Ziska et al., 2013); (ii) ocean depth (indicating the open ocean and coastal regions; ~0.08° horizontal
resolution); (iii) ancillary ocean physical and biogeochemical variables (monthly means; Table S1). The
ancillary ocean biogeochemical variables (see next section for details) are from the fully coupled control
run in the NCAR CESM Large Ensemble data set (Kay et al., 2014). All ancillary biogeochemical variables
are sampled based on the time (year‐month) and location of each HalOcAt observation. Due to the sparse
availability of the surface seawater observations (less than 5,000, Figures 2 and 4), our current approach is
unable to resolve the short‐term variations (e.g., <1 month). Stemmler et al. (2015) indicated that the
CHBr3 residence time in the ocean is 200–300 days; therefore, our choice of temporal resolution for the
machine learning (1 month) may not cause considerable structural biases. If more surface seawater observa-
tions are available in the future, our approach can certainly accommodate the need for higher temporal
resolution (e.g., weekly). Once trained, the machine‐learning algorithm uses the same modeled ocean
biogeochemical variables for prediction at all model grid points. For testing and evaluation purposes, the
machine‐learning emulator is currently running offline in this work. As a component of the Earth system
model (CESM), CAM‐chem is capable of operating in coupled configurations, for example, with the active
sea ice model, ocean model, and marine ecosystem model through a coupler. In such coupled configura-
tions, the trained machine‐learning emulator may directly retrieve the variables from the marine ecosystem
model via the coupler, providing “in‐house” predictability, which is essential for the future and past
climate projections.

Recent studies have used satellite products and gridded observations to investigate the oceanic influence of
organohalogens (Ordóñez et al., 2012; Sherwen et al., 2019), providing remarkable insights into the ocean
biogeochemistry control on the organohalogen sources and chemistry, especially in the tropical regions.
There are a few limitations to the applications using satellite or gridded observations: (i) As discussed earlier,
the satellite and gridded observations have limited temporal resolution (e.g., monthly). (ii) The satellite pro-
ducts may have (relatively) limited coverage in the high‐latitude regions, for example, the Southern Ocean in
boreal summer, due to the satellite orbital patterns and the impacts of cloudy and highly reflective surface
(e.g., sea ice) conditions. This is particularly relevant for the Br‐VSLS, since current oceanic Br‐VSLS inven-
tories show large discrepancies in the Southern Ocean (Hossaini et al., 2013). (iii) The future/past climate
projections may not be easily justified if using the satellite and gridded observations. (iv) The satellite and
gridded observations may not cover the full complexity of the physical and biogeochemical processes affect-
ing the natural synthesis of Br‐VSLS in the ocean. For example, the chlorophyll a product from the SeaWiFS
satellite observations (Hu et al., 2012) do not separate the different chlorophyll content from different phy-
toplankton groups nor provide insights into the growth/nutrient limitations. In this work, we propose an
alternative approach and use the upper ocean biogeochemistry variables from the CESM Parallel Ocean
Program (POP) and the Biogeochemical Elemental Cycling (BEC) model (Moore et al., 2013) for the
machine‐learning emulator. We consider this alternative approach has the following advantages: (i) As dis-
cussed earlier, the machine‐learning emulator based on the CESM POP/BEC may accommodate the need
for higher temporal resolution (once more seawater observations of Br‐VSLS become available). (ii) The cur-
rent configuration of themachine‐learning emulator provides improved spatial coverage in the high‐latitude
regions compared to the satellite products, especially the Southern Ocean in boreal summer. The Southern
Ocean represents a large fraction of the global ocean and a diversity of biogeochemical regimes and is parti-
cularly sensitive to climate change (Stephens et al., 2018). The Southern Ocean also features a variety of
unique conditions affecting the air‐sea exchange processes, such as the waves and bubbles at the air‐sea
interface driven by the strong surface winds, and the coupled ocean‐sea ice‐atmosphere interactions
(Fernandez et al., 2019). Given the long tropospheric lifetimes (a few weeks or longer) of Br‐VSLS
(Hossaini et al., 2016), the Southern Ocean‐emitted CHBr3 and CH2Br2 might contribute to the tropospheric
Br‐VSLS burden and affect their seasonal variations on the hemispheric scale (Abrahamsson et al., 2018).
(iii) A variety of physical and biogeochemical variables are incorporated into the machine learning, provid-
ing the complexity that is needed to capture the spatial and temporal variations of Br‐VSLS in the ocean. For
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example, different types of variables are used in the machine‐learning emulator, including nutrients (iron,
phosphate, nitrate, etc.), different chlorophyll content (diatom, diazotroph, and small phytoplankton),
salinity, oxygen (dissolved oxygen and surface oxygen flux), and radiation. (iv) These CESM POP/BEC
variables are used in both training and the prediction, providing the inherent consistency for the CESM
framework that is important for future/past climate projections. The CESM POP/BEC models have been
extensively studied and proven to capture the large‐scale features as revealed in the observations related
to the nutrients and productivity (Danabasoglu et al., 2011; Doney et al., 2009; Krumhardt et al., 2017;
Long et al., 2016; Moore et al., 2013; Moore & Braucher, 2008). More details are provided in the
supporting information. We later show that this training‐prediction workflow yields overall quite
reasonable agreement with observations including those in the Southern Ocean.

The training process of the random forest algorithm is as follows: 80% of all valid data (as flagged by the
HalOcAt data set), as well as the ancillary variables, are randomly sampled as the training data set, and
the remaining is used as testing data set. The training data set is used to construct the random forest, and
the testing data set is used to evaluate the performance of the training (i.e., Pearson coefficient better than
~0.8 and the linear fit slope between ~0.9 and ~1.1). The aforementioned bootstrap approach (Pedregosa
et al., 2011) was used for sampling to avoid overfitting. Some of the hyperparameters of the algorithm
may be tuned to improve the performance. In this work, the random forest hyperparameterization config-
uration is as follows: number of decision trees: 2,000; criterion (error metric to evaluate the split): MSE;
the maximum depth of the tree is not restricted (so that the nodes will be split until all leaf nodes contain
only one sample). The algorithm may return a predictor importance rating, which is the percentage of time
that a predictor (independent/ancillary variable) is used to split the tree. The ancillary variables with low
importance rating may be eliminated from further training and predictions. The importance rating is given
in Table S1. Lastly, the monthly fields (multiyear means between 2005 and 2015) of these variables are used
in the trained algorithm to predict the surface seawater concentrations of Br‐VSLS as the inputs of the air‐sea
exchange module.

Figure 2. (top) One‐dimensional and (bottom) two‐dimensional probability distributions of the observed (HalOcAt) and machine‐learning predicted surface
seawater concentrations of (left) CHBr3 and (right) CH2Br2. Data points in both the open ocean and the coastal regions (ocean depth shallower than 200 m) are
included in this analysis. HalOcAt data set = Halocarbons in the Ocean and Atmosphere.
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2.4. Atmospheric Observations Used for Model Comparison

In this work, surface CHBr3 and CH2Br2 measurements from 14 stations around the globe (NOAA/ESRL
global monitoring network Montzka et al., 2011) are used to evaluate the modeled seasonal and spatial var-
iations of the CHBr3 and CH2Br2. In brief, whole air samples were collected approximately weekly into
paired steel or glass flasks, prior to being analyzed at NOAA/ESRL in Boulder, Colorado (Montzka et al.,
2011). In addition, the airborne CHBr3 and CH2Br2 measurements from the NASA ATom field campaign
(ATom‐1: July–August 2016 and ATom‐2: January–February 2017). During ATom‐1 and ATom‐2, the heav-
ily instrumented NASA DC‐8 aircraft transected the lengths of the Pacific and Atlantic Oceans during two
seasons (Figure S2), constantly profiling from the surface to the upper troposphere/lower stratosphere.
During ATom‐1 and ATom‐2, CHBr3 and CH2Br2 were simultaneously measured by three techniques: the
NCAR Trace Organic Gas Analyzer (TOGA; Apel et al., 2003, 2015), the University of California, Irvine
(UCI) Whole Air Sampler (WAS; Blake et al., 2003), and the NOAA Programmable Flask Package (PFP)
whole air sampler. NCAR TOGA is a fast online gas chromatograph/mass spectrometer system, with an ana-
lyzing cycle of ~2 min. The UCI WAS and NOAA PFP are both offline whole air samples, and the samples
were analyzed afterward in the respective laboratories. The model outputs were sampled along the flight
track for comparison.

3. Predicted Surface Seawater Concentrations

In this section, the machine‐learning predicted surface seawater concentrations of CHBr3 and CH2Br2 are
compared to the HalOcAt observation data set. The statistical distributions of the observed CHBr3 and
CH2Br2 are both well captured by the machine‐learning emulator (Figure 2). Overall, the observed latitude
dependencies of CHBr3 and CH2Br2 are both well captured by the machine‐learning algorithm (Figure 3).

The mean absolute percentage error (MAPE≡
100
n

∑
n

i¼1
∣
MODi−OBSi

OBSi
∣, where OBSi and MODi represent the

individual observations andmodeled results, respectively, and n is the number of samples) in the open ocean
are 12% and 21% for CHBr3 and CH2Br2, respectively. In the coastal regions (ocean depth≤ 200m), themean
absolute percentage error (MAPE) for CHBr3 and CH2Br2 are 37% and 46%, respectively. The root‐mean‐

square errors (RMSE≡

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
∑
N

i¼1
MODi−OBSið Þ2

N

vuuut
) in the open ocean are 4.9 and 0.8 pmol/L for CHBr3 and

CH2Br2, respectively; in the coastal regions the RMSE are 33 and 3.1 pmol/L for CHBr3 and CH2Br2,

Figure 3. Latitude dependencies of the predicted surface seawater CHBr3 in the open oceans compared to the HalOcAt data set. Gray and pink dots represent the
HalOcAt observations and the machine‐learning predictions, respectively. Black and red lines indicate the median profiles of the HalOcAt observations and the
machine‐learning predictions, respectively. The 25–75% percentiles of the HalOcAt observations and the machine‐learning predictions are shown with gray
and pink shadings, respectively. The medians and the quartiles of the observations are reasonably well captured by the machine learning. HalOcAt data
set = Halocarbons in the Ocean and Atmosphere.
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respectively. It remains challenging to fully resolve the coastal features in current global chemistry‐climate
models. For instance, in a state‐of‐the‐art ocean VSLS model, a fixed concentration was prescribed in waters
shallower than 200 m, and the coastal sources (macroalgae with tide‐dependent bromoform production,
released from benthic algae and seagrass) are not explicitly represented (Stemmler et al., 2015). Similarly,
Ordóñez et al. applied a scaling factor to account for the enhanced VSLS emissions in the coastal regions
to reproduce the observations at the coastal sites (Ordóñez et al., 2012). We will show later that coastal
regions contribute to a substantial fraction to the global total Br‐VSLS emissions.

Figure 4 shows the December–May and June–Novembermeans of the surface seawater predicted CHBr3 and
CH2Br2. In general, the surface seawater CHBr3 and CH2Br2 are enhanced in coastal regions, as well as the
productive upwelling zones in the tropics, where the nutrient‐rich surface waters support the phytoplankton
growth or the enhanced vertical mixing with the maximum production of Br‐VSLS below the (shallow)
mixed layer as revealed from previous studies (Liu et al., 2013). Similarly, elevated surface seawater
CHBr3 and CH2Br2 are also found in the Southern Ocean in December–May, which may be related to the
upwelling in the Antarctic divergence zone. In contrast, lower surface seawater Br‐VSLS is found in the
ocean gyres due possibly to the limited nutrients. Overall, the observationally trained machine‐learning
algorithm captures the large‐scale features and the seasonality of the observed surface seawater Br‐VSLS.
Advanced chemistry‐climate models with higher horizontal resolution or regional refinement capability
may help to improve the model bias in the coastal regions. In the meantime, long‐term (multiseasonal)
observations will likely improve the performance of the machine‐learning emulator in the coastal regions.

4. Surface Atmospheric Concentrations Compared to Surface Observations

The machine‐learning predicted surface seawater concentrations of Br‐VSLS are used to drive the air‐sea
exchange of Br‐VSLS (OASISS), and the CAM‐chem predicted monthly mean surface atmospheric mixing
ratios are compared to the surface observations obtained at 14 stations from the NOAA/ESRL global
network. This model configuration is hereafter denoted as CAM‐chem OASISS/Machine‐learning. The
CAM‐chem simulation with prescribed oceanic VSLS emissions scaled to satellite chlorophyll (Ordóñez
et al., 2012) is also shown, which is denoted as CAM‐chem Ordóñez‐2012. The model configuration of

Figure 4. December–May and June–November means of surface seawater concentrations of CHBr3 and CH2Br2. Black dots represent the locations where observa-
tions (HalOcAt) were available. HalOcAt data set = Halocarbons in the Ocean and Atmosphere.
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CAM‐chem Ordóñez‐2012 has been extensively used for VSLS studies (Fernandez et al., 2014; Navarro et al.,
2015; Saiz‐Lopez et al., 2012) and is otherwise identical to CAM‐chem OASISS/Machine‐learning.
Meanwhile, previous TOMCAT model predictions from Hossaini et al. (2013) using a full set of oceanic
emission inventories (Liang et al., 2010; Ordóñez et al., 2012; Warwick et al., 2006; Ziska et al., 2013), here-
after denoted as TOMCAT Ordóñez‐2012, TOMCAT Liang‐2010, TOMCAT Ziska‐2013, and TOMCAT
Warwick‐2011, are compared to the CAM‐chem simulations. Note that these TOMCAT simulations are
for a different period (1997–2011) than the CAM‐chem simulations and the NOAA observations presented
in this work (2005–2015). The interannual variability of ocean emissions of VSLS is usually assumed to be
small (Hossaini et al., 2013, 2016). The modeled and observed monthly mean surface CHBr3 and CH2Br2
mixing ratios were determined for selected locations (Figures 5 and 6):

In the Arctic, CAM‐chem OASISS/Machine‐learning captures the seasonal variations of observed CHBr3 in
Alert (Canada) and Summit (Greenland) but not in Barrow (Alaska, USA). In Alert and Barrow, the
observed surface CHBr3 mixing ratios were not well captured by any of the models discussed in this work,
especially in winter, possibly due to the sea ice emissions not considered in the models. Performance‐wise,
in Alert (Canada), TOMCAT Liang‐2010 yields the best agreement with observations, followed by CAM‐

chem OASISS/Machine‐learning. In Summit (Greenland), CAM‐chem OASISS/Machine‐learning yields
the best agreement.

In the coastal midlatitudes, the observed seasonal variations in Mace Head (Ireland) and Trinidad Head
(USA) are not captured by any of the previous models, possibly due to the unique local (coastal) conditions
that deviate from the global background (Yokouchi et al., 2017). By contrast, CAM‐chem OASISS/Machine‐
learning yields the best agreement with observations in these coastal midlatitude locations.

In the continental midlatitudes, the observed seasonal variations in Harvard Forest (USA), Niwot Ridge
(USA), and Wisconsin (USA) are captured by CAM‐chem OASISS/Machine‐learning, as well as CAM‐chem
Ordóñez‐2012 and TOMCAT Ordóñez‐2012. TOMCAT Liang‐2010 also produces quite reasonable
agreement (within the variations of the observations) in Harvard forest (USA) and Niwot Ridge (USA) but
overestimates surface CHBr3 measurements in Wisconsin (USA).

In the tropics, TOMCAT Ziska‐2013 and TOMCAT Liang‐2010 both yield overall very good agreement in
Mauna Loa (USA), Cape Kumukahi (USA), and Cape Matatula (American Samoa), while CAM‐chem
Ordóñez‐2012 and TOMCAT Ordóñez‐2012 tend to overestimate the surface CHBr3 observations in these
tropical locations. The surface CHBr3 modeled by CAM‐chemOASISS/Machine‐learning in this work is also
in good agreement with observations in Mauna Loa (USA) but is lower (by about half a part per thousand)
than that observed in Cape Kumukahi (USA). In Cape Matatula (American Samoa), however, CAM‐chem
OASISS/Machine‐learning predicts a pronounced annual maximum in May–July, while observed surface
CHBr3 in the same period is only slightly enhanced.

In the Southern Hemisphere, the surface observations of CHBr3 show interesting seasonal variations. In
Cape Grim (Australia), slightly enhanced surface CHBr3 are observed in December–March, while all models
predict an annual maximum in April–August. At the Palmer Station (Antarctica), slightly enhanced surface
CHBr3 are found from January to June (with large variations in January–February), and CAM‐chem
OASISS/Machine‐learning predicts an annual maximum in May–July. All other models predict a consistent
June–August maximum at the Palmer Station. At the South Pole, however, the observed surface CHBr3
peaks in July–October, which is reasonably well captured by CAM‐chem Ordóñez‐2012, TOMCAT
Ordóñez‐2012, and TOMCAT Liang‐2010. CAM‐chem OASISS/Machine‐learning predicts an annual
maximum April–September at the South Pole, 2–3 months earlier than observations.

It should be noted that the TOMCAT simulation period (1997–2011) from Hossaini et al. (2013) is not
the same as the studied period in this work (2005–2015), although the observed CHBr3 at these stations
in 2005–2015 is quite similar to that in 1997–2011 (Hossaini et al., 2013). The modeled atmospheric
CHBr3 may be affected by photolysis, hydroxyl radicals, and transport, which may well differ between
CAM‐chem in this work and TOMCAT. The inter‐model discrepancy may be partially glimpsed by
examining the difference between CAM‐chem Ordóñez‐2012 and TOMCAT Ordóñez‐2012: The differ-
ence is quite small, except in Trinidad Head (USA) and Harvard Forest (USA) where the discrepancy
is close to 1 ppt (Figure 5).
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Surface CH2Br2 mixing ratios, however, do not show a pronounced seasonal and spatial variations as CHBr3,
due to its longer tropospheric lifetime (Figure 6). Figure 6 shows the modeled and observed monthly mean
surface CH2Br2 mixing ratios in different locations. In general, CAM‐chem OASISS/Machine‐learning cap-
tures the observed levels and seasonal variations of CH2Br2 in 12 out of 14 sites; in Barrow (USA) and
Trinidad Head (USA) CAM‐chem OASISS/Machine‐learning predicts a pronounced summer maximum
(similar is seen for CHBr3) which is not seen in observations. The performance of other models varies with
locations. Notably, in Summit (Greenland), Alert (Canada), Niwot Ridge (USA), Wisconsin (USA), Mauna
Loa (USA), and Cape Kumukahi (USA), TOMCAT simulations show little seasonal variations, while
CAM‐chem simulations capture the summer minimum of observed CH2Br2.

The overall performance of different models can be evaluated using the Taylor diagram (Figure 7). In this
analysis, monthly mean surface observations and the modeling results for all locations are aggregated.
The observed annual mean CHBr3 is well captured by the top‐down inventories such as Ordóñez et al.
(2012) and Liang et al. (2010), as model simulations using these top‐down inventories cluster around the
1:1 reference line in the Taylor diagram (Figure 7). But the seasonal variations may not be fully resolved
in these top‐down inventories (as discussed previously), which is indicated by moderate Pearson coefficient
(0.2–0.4) in the Taylor diagram. Ziska et al. (2013), a bottom‐up inventory, better captures the seasonal
variations compared to the top‐down inventories, as indicated by an improved Pearson coefficient (~0.7).
The newly developed bottom‐up inventory in this work (CAM‐chem OASISS/Machine‐learning) tends to
underestimate the annual mean CHBr3 (by ~23% globally), but the seasonal variations of CHBr3 are
very well captured (Pearson coefficient: ~0.88). As for CH2Br2, all models discussed in this work are
capable of reproducing the observed mean CH2Br2 levels within ~30%. CAM‐chem model tends to better
resolve the observed seasonal variations of CH2Br2 (Pearson coefficient 0.5–0.7) than TOMCAT (Pearson
coefficient < 0.2).

Figure 5. Comparison of observedmonthly mean CHBr3 mixing ratio at 14 NOAA/ESRL ground stations with output from this work, as well as previous modeling
results using different oceanic emission inventories from Hossaini et al. (2013). NOAA/ESRL = National Oceanic and Atmospheric Administration/Earth System
Research Laboratory; CAM‐chem = Community Atmospheric Model with chemistry.
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5. Comparison of the Global Oceanic Emissions

Figure 8 compares the newly developed bottom‐up oceanic emission inventory of CHBr3 (with online air‐sea
exchange and machine‐learning predicted surface seawater concentrations) to a successful top‐down
emission inventory from Ordóñez et al. (2012). The Ordóñez‐2012 inventory shows little seasonal variations,
partially leading to the lower Pearson coefficient in the Taylor diagram (Figure 7). A recent study highlighted
the importance of seasonally resolved oceanic emissions for the stratospheric injection of Br‐VSLS
(Fiehn et al., 2018). The new emission inventory (Figure 8) shows clear seasonal variations, leading to
improved seasonal variations globally (Figure 7). The Ordóñez‐2012 inventory also has fixed values in the
subtropical, midlatitude, and high‐latitude oceans. We noted that the new bottom‐up oceanic emission
inventory of CHBr3 shows high sea‐to‐air flux over the Indian Ocean, South China Sea, and Java Sea (2–3
× 107 molecules·cm−2·s−1), which is comparable to the oceanic CHBr3 flux reported over the South China
Sea (2.5 ± 2.9 × 107 molecules·cm−2·s−1; Fuhlbrügge et al., 2016), but toward the upper end of that over
the Indian Ocean (1.5 ± 2.0 × 107 molecules·cm−2·s−1; Fiehn et al., 2017). The Ordóñez‐2012 inventory,
however, shows approximately 1.5–2.0 × 107 molecules·cm−2·s−1, in this region, comparable to that reported
in Fiehn et al. (2017), but is toward the lower end of that in Fuhlbrügge et al. (2016). The reason that the new
inventory in this work shows high CHBr3 flux is that one cruise study in the Bay of Bengal (6.87–11.96°N,
88.07–88.26°E) reported high CHBr3 levels in the surface noncoastal waters (46 ± 10 pmol/L; Yamamoto
et al., 2001); as a result the machine‐learning algorithm predicted high surface seawater concentrations in
that region as well (Figure 4). This is the only surface seawater measurement available in the HalOcAt data
set in that region (Figure 4). Figure 9 shows the same comparison for CH2Br2. Similarly, the Ordóñez‐2012
inventory shows little seasonal variations and has no oceanic fluxes for CH2Br2 in the majority of the
Southern Hemisphere. The new inventory in this work also shows high oceanic CH2Br2 fluxes over the
Indian Ocean and South China Sea (0.6–0.9 × 107 molecules·cm−2·s−1), very close to that reported over

Figure 6. Comparison of observed monthly mean CH2Br2 mixing ratio at 14 NOAA/ESRL ground stations with output from this work, as well as previous model-
ing results using different oceanic emission inventories from Hossaini et al. (2013). NOAA/ESRL = National Oceanic and Atmospheric Administration/Earth
System Research Laboratory; CAM‐chem = Community Atmospheric Model with chemistry.
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the South China Sea (0.7 ± 0.6 × 107 molecules·cm−2·s−1; Fuhlbrügge et al., 2016), but is a factor of ~2 lower
than that reported over the Indian Ocean (1.6 ± 3.3 × 107 molecules·cm−2·s−1; Fiehn et al., 2017). The
Ordóñez‐2012 inventory shows less than 0.5 × 107 molecules·cm−2·s−1 in the entire region, lower than that
reported in Fuhlbrügge et al. (2016) or Fiehn et al. (2017). More surface seawater observations in this region
will certainly improve the performance of the machine‐learning emulator, as well as the bottom‐up oceanic
emission inventory for CHBr3 and CH2Br2.

The global oceanic emissions of CHBr3 and CH2Br2 estimated in this work and previous studies are summar-
ized in Table 1. The global marine emission of CHBr3 estimated in this work is 385 Gg Br per year, toward the
lower end of the range predicted by the top‐down estimates (381–840 Gg Br per year) but higher than other
recently developed bottom‐up inventories (70–200 Gg Br per year; Table 1). The global oceanic emission of
CH2Br2 is estimated to be 54 Gg Br per year, which is lower than the top‐down estimates (57–280 Gg Br per
year) but comparable to the recent bottom‐up inventories (62–78 Gg Br per year). In particular, Stemmler
et al. (2015) calculated the air‐sea fluxes of CHBr3 using the atmospheric concentration of CHBr3 (observa-
tions mapped to the global scale) from Ziska et al. (2013) and surface seawater concentration of CHBr3 pre-
dicted by a state‐of‐the‐art ocean biogeochemistrymodel, suggesting that themajority of the Southern Ocean
is a net sink of CHBr3 in boreal summer. In this work, the majority of the Southern Ocean is found to be a net
sink of CHBr3 in boreal summer, consistent with Ziska et al. (2013) and Stemmler et al. (2015), but the ocean
uptake of CHBr3 simulated in this work (CAM‐chem OASISS/Machine‐learning) is weaker than that pre-
dicted in Ziska et al. (2013) and Stemmler et al. (2015). The machine‐learning emulator is capable of captur-
ing the enhanced surface CHBr3 in the marginal sea ice regions in the Southern Ocean (with limited
radiation but enriched in nutrients), as indicated by the good agreement in the Southern Ocean
(Figure 3). Yet, the observed surface atmospheric CHBr3 (and CH2Br2) abundances and seasonality in the
Southern Hemisphere locations remain not fully explained by models (Figure 5 and 6). Recent studies have
reported episodic CHBr3 emissions from the sea ice in Antarctica (Abrahamsson et al., 2018), much higher
than the long‐term monthly mean CHBr3 observed at the Palmer Station or the South Pole in the same sea-
son. The sea ice biogeochemical cycles remain poorly understood, and the VSLS emissions from sea ice are
not included in our model configuration. Given the relatively long atmospheric lifetimes of these VSLS in the
high latitude regions (mostly during austral winter), the Southern Ocean and sea ice emissions of VSLS may

Figure 7. Taylor diagrams showing the modeled surface atmospheric CHBr3 and CH2Br2 from different models compared to the surface observations, across
all 14 stations. The yellow shading indicates the standard deviation of all observations, and the Pearson coefficient represents the combined temporal/spatial
variation. CAM‐chem = Community Atmospheric Model with chemistry.
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have broad impacts on the hemispheric scale (Abrahamsson et al., 2018). Future Br‐VSLS studies that target
the Southern Ocean, in particular, during boreal summer months could help resolve this discrepancy. We
find that coastal regions (200 m or shallower) contribute 26% and 16% to the global marine emissions of
CHBr3 and CH2Br2, respectively. The coastal contributions derived in this work may be subject to
substantial uncertainties (e.g., MAPE for the surface seawater CHBr3 and CH2Br2 are 37% and 46%,
respectively; the uncertainties associated with the air‐sea exchange processes are commonly quoted as a
factor of 2 or so; Johnson, 2010). Our estimates of the coastal contributions in this work are consistent
with a recent study focusing on the western Pacific (Butler et al., 2018) but are lower than that in
Stemmler et al. (2015), which may be partially due to the different model configurations: The ocean
emissions in our model (CAM‐chem OASISS/Machine‐learning) are fully coupled with atmospheric
transport and chemistry, while Stemmler et al. (2015) calculated the sea‐to‐air fluxes offline (using
objectively mapped air concentrations from Ziska et al., 2013).

6. Vertical Distributions and Model Comparison

In this section, the CAM‐chem modeled vertical distributions of CHBr3 and CH2Br2 are compared to the
airborne measurements using NCAR TOGA, UCI WAS, and NOAA PFP during ATom‐1 and ATom‐2
(NOAA PFP CHBr3 was not available for ATom‐1). Flight tracks are given in Figure S2 (we focus on
research flights over the oceans only). Two CAM‐chem simulations with both OASISS/ML and the
Ordóñez‐2012 inventory are discussed, and the results are binned spatially (Northern Hemisphere, tropi-
cal, Southern Hemisphere, and Southern Ocean, over both the Pacific and the Atlantic; see Figure S2). In
general, elevated CHBr3 were reported in the marine boundary layer by all three techniques (Figure 10),
implying ocean is a net source. However, the vertical distribution of CHBr3 and CH2Br2 shows consider-
able spatial and seasonal variations. Interestingly, the CHBr3 reported by these techniques sometimes
shows quite significant discrepancies.

Northern Hemisphere during ATom‐1. Both NCAR TOGA and UCI WAS reported ~0.7 ppt (median) CHBr3
in the marine boundary layer over the Pacific, consistent with CAM‐chem simulation with OASISS/ML

Figure 8. December–May and June–November averages of the oceanic emission fluxes of CHBr3 predicted in this work
(left) compared to a top‐down inventory from Ordóñez et al. (2012; right). Warmer colors indicate upward fluxes
(i.e., the ocean is net emitting), while colder colors indicate downward fluxes (i.e., the ocean is a net sink).
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(Figure 10a). The simulation with Ordóñez‐2012 tends to overestimate CHBr3 in the Northern Hemisphere
over the Pacific (Figure 10a). On the Atlantic side, measured CHBr3 reached 1.2–1.4 ppt (median) in the
marine boundary layer, which is well captured by the simulation using the simulation with Ordóñez‐2012
(Figure 11b). The simulation using OASISS/ML is only slightly lower than observed in the marine
boundary layer, still within the ranges of the observations (Figure 10b). Both simulations tend to
underestimate CHBr3 in the free troposphere in the Northern Hemisphere over both the Pacific and the
Atlantic (Figures 10a and 10b), which may be attributed to deficiencies in representing the vertical uplift
in the model.

Figure 9. December–May and June–November averages of the oceanic emission fluxes of CH2Br2 predicted in this work
(left) compared to that from Ordóñez et al. (2012; right). Warmer colors indicate upward fluxes (i.e., the ocean is net
emitting), while colder colors indicate downward fluxes (i.e., the ocean is a net sink).

Table 1
Global Total Marine Emissions of CHBr3 and CH2Br2 Estimated in This Work and Previous Studies

Global total marine emissions (Gg Br/year) CHBr3 CH2Br2 Note

This work 385 54 Bottom‐up (I)
Quack and Wallace (2003) 822 — Top‐down (II)
Warwick et al. (2006) 381–571 104 Top‐down (II)
Butler et al. (2007) 840 280 Top‐down (II)
Liang et al. (2010) 425 57 Top‐down (II)
Ordóñez et al. (2012) 507 62 Top‐down (III)
Ziska et al. (2013) 120–200 62–78 Bottom‐up (IV)
Lennartz et al. (2015) 226 58 Bottom‐up (V)
Stemmler et al. (2015) 72 — Bottom‐up (VI)

Note. (I) = air‐sea exchange is coupled (online) with atmospheric chemistry and dynamics, and the surface seawater concentrations (to drive the air‐sea
exchange) are predicted by machine learning; (II) = estimated based on global observations; (III) = marine emissions of very short lived substances scaled to
satellite‐chlorophyll. (IV) = oceanic fluxes calculated offline based on surface seawater concentrations and surface atmospheric concentrations, both fitted from
observations (objective mapping); (V) = air‐sea exchange is coupled (online) with atmospheric chemistry and dynamics, using seawater concentrations from
Ziska et al. (2013; objectivemapping); (VI) = oceanic fluxes calculated offline based on surface seawater concentrations modeled using an ocean biogeochemistry
model and surface atmospheric concentrations from Ziska et al. (2013).
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Tropics during ATom‐1. Observed CHBr3 show strong vertical gradient in the marine boundary layer, and
the vertical profile shapes were very well captured by the simulations using both inventories (Figure 10c).
On the Pacific side, the simulation with the Ordóñez‐2012 inventory shows better agreement with observa-
tions, while the simulation with OASISS/ML slightly underestimate CHBr3 in the marine boundary layer
(Figure 10c). On the Atlantic side, however, the observed CHBr3 in the marine boundary layer is well cap-
tured by the simulation using OASISS/ML and is slightly overestimated by Ordóñez‐2012 (Figure 10c).
Both simulations captured the CHBr3 levels in the tropical free troposphere over the Pacific and the
Atlantic (Figure 10c).

Southern Hemisphere during Atom‐1. Enhanced CHBr3 was observed in the marine boundary layer, with
weaker vertical gradient compared to the tropics, implying weaker oceanic emissions (Figures 10e and
10f). Both simulations overestimate CHBr3 in the marine boundary layer on the Pacific side (Figure 10e).
On the Atlantic side, however, CHBr3 mixing ratios in the marine boundary layer were well captured by
the simulation using OASISS/ML but was underestimated by the Ordóñez‐2012 inventory (Figure 10f).

Southern Ocean during ATom1. Elevated CHBr3 was reported by both NCAR TOGA and UCI WAS, which
was gradually decreased with increasing altitude, implying that the Southern Ocean is a net source of CHBr3
during boreal summer and possibly prolonged tropospheric lifetime of CHBr3 (Figures 10g and 10h). The

Figure 10. Vertical distributions of CHBr3 measured using NCAR TOGA (gray: raw data; black: median/quartiles), UCI WAS (light yellow dots: raw data; gold
boxes: median/quartiles), and NOAA PFP (green: raw data; medians not calculated due to relatively small sample sizes), as well as the CAM‐chem modeled
results using OASISS/Machine‐learning (ML) and the Ordóñez‐2012 inventory, during ATom‐1 (A‐H) and ATom‐2 (I‐P). The flight tracks and the spatial domains
are defined in Figure S2. The modeling results were sampled along the flight tracks. NOAA PFP CHBr3 measurements were not available for ATom‐1 at this
time. NCAR TOGA = National Center for Atmospheric Research Trace Organic Gas Analyzer; UCI WAS = University of California, Irvine Whole Air Sampler;
NOAA PFP = National Oceanic and Atmospheric Administration Programmable Flask Package; CAM‐chem = Community Atmospheric Model with chemistry;
OASISS = Online Air‐Sea Interface for Soluble Species.
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observed vertical distributions of CHBr3 over the Southern Ocean were reasonably well captured by both
simulations, and the simulation using OASISS/ML shows slightly better agreement (Figures 10g and 10h).

Northern Hemisphere during ATom‐2. Observed CHBr3 decreased with increasing altitude. However, CHBr3
reported by NCAR TOGA and UCI WAS show a factor of ~2 difference on both the Pacific and the Atlantic
side, while NOAA PFP measurements show similar range as NCAR TOGA (Figures 10i and 10j). Both
simulations captured the vertical profile shapes reasonably well, and the discrepancies between these two
simulations were generally smaller than that between the three measurement techniques.

Tropics during ATom‐2. Elevated CHBr3 was reported in the marine boundary layer on the Pacific side but
not so much on the Atlantic side. Again the three sets of measurement techniques report nearly a factor of 2
difference in CHBr3 over the tropical Pacific (Figure 10k), but much better agreement was observed over the
tropical Atlantic (Figure 10l). Interestingly, over the tropical Pacific, the simulation using OASISS/ML was
in good agreement with the NCAR TOGA and NOAA PFP measurements, but the simulation using
Ordóñez‐2012 was in good agreement with the UCI WAS measurements (Figure 10k). Over the tropical
Atlantic, the simulation using OASISS/ML was in reasonable agreement with both observations in the
marine‐boundary layer but showed a noticeable low bias in the free troposphere, possibly due to the uncer-
tainties in the vertical transport. The Ordóñez‐2012 inventory tends to overestimate CHBr3 in the marine‐
boundary layer (Figure 10l).

Figure 11. Vertical distributions of CHBr3 measured using NCAR TOGA (gray: raw data; black: median/quartiles), UCI WAS (light yellow dots: raw data; gold
boxes: median/quartiles), and NOAA PFP (green: raw data; medians not calculated due to relatively small sample sizes), as well as the CAM‐chem modeled
results using OASISS/Machine‐learning and the Ordóñez‐2012 inventory, during ATom‐1 (A‐H) and ATom‐2 (I‐P). The modeling results were sampled along the
flight tracks. NCAR TOGA = National Center for Atmospheric Research Trace Organic Gas Analyzer; UCI WAS = University of California, Irvine Whole Air
Sampler; NOAA PFP = National Oceanic and Atmospheric Administration Programmable Flask Package; CAM‐chem = Community Atmospheric Model with
chemistry; OASISS = Online Air‐Sea Interface for Soluble Species.
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Southern Hemisphere during ATom‐2. The observed CHBr3 did not show strong vertical gradient over the
SouthernHemisphere (Figures 10m and 10n). On both the Pacific and the Atlantic side, the observed vertical
distribution of CHBr3 was reasonably well captured by the simulation using OASISS/ML, and Ordóñez‐2012
overestimate CHBr3 in the marine boundary layer by ~50% (Figures 10m and 10n).

Southern Ocean during ATom2. The observed CHBr3 gradually decreased with increasing altitude over the
Southern Ocean, and the two instruments showed once again a factor of ~2 discrepancy in the lower
troposphere (Figures 10o and 10p). The observed vertical distribution of CHBr3 was better captured by the
simulation using OASISS/ML on the Pacific side (Figure 10o). Both simulations were consistent on
the Atlantic side (Figure 10p).

CH2Br2, however, does not show as strong vertical and spatial variations as CHBr3 (Figure 11), due to its
weaker oceanic emissions and longer tropospheric lifetime. During ATom‐1, the vertical profile shapes of
CH2Br2 were reasonably well captured by both simulations (Figures 11a–11h). The simulation with
Ordóñez‐2012 inventory showed better agreement with observations except for over the Southern Ocean
(Figures 11a–11f). Over the Southern Ocean, the simulation using Ordóñez‐2012 inventory slightly underes-
timated the observed CH2Br2, yet the simulation using OASISS/ML showed a slightly overestimation
(Figures 11g and 11h). During ATom‐2, the observed vertical distributions of CH2Br2 in all regions except
for the Southern Ocean were reasonably well captured by both simulations as well, although the simulation
using OASISS/ML slightly underestimate the observed CH2Br2 (Figures 11i–11n). Over the Southern Ocean,
however, the simulation using OASISS/ML showed better agreement with the observations, while the
Ordóñez‐2012 inventory underestimated CH2Br2 observations (Figure 11p). Note that the Ordóñez‐2012
inventory has virtually no CH2Br2 emissions over the majority of the Southern Ocean.

Table 2 summarizes the overall model performance compared to the three sets of observations during
ATom‐1 and ATom‐2. For CHBr3, CAM‐chem simulation using OASISS/ML shows better agreement with
NCAR TOGA and NOAA PFP, yet CAM‐chem using Ordóñez‐2012 compares slightly better with the UCI
WAS measurements. For CH2Br2, CAM‐chem simulation using OASISS/ML again shows better agreement
with NCAR TOGA, but CAM‐chem using Ordóñez‐2012 shows slightly improved agreement with UCIWAS
and NOAA PFP.

7. Conclusions and Remarks

In this work, we present new online bottom‐up oceanic emission inventories for CHBr3 and CH2Br2 devel-
oped for the NCAR CESM2, powered by a data‐oriented machine‐learning emulator representing the ocean
biogeochemistry control. The machine‐learning emulator, trained by observations, predicted surface sea-
water concentrations of CHBr3 and CH2Br2 that are in reasonable agreement with the HalOcAt data set, a
long‐term global observation compilation (1987–2011). The predicted monthly mean surface seawater con-
centration fields are then used to drive the air‐sea exchange, considering the local physical state of the ocean
and the atmosphere. The air‐sea exchange is fully coupled with the atmospheric chemistry and dynamics.
The modeled surface atmospheric CHBr3 and CH2Br2 are evaluated with ground‐based observations from
the NOAA/ESRL ground‐based monitoring network, which are more sensitive to nearby oceanic

Table 2
Root‐Mean‐Square Error (RMSE) and Mean Absolute Percentage Error (MAPE) of the CAM‐chem Modeled CHBr3 and CH2Br2, Using Either OASISS/Machine‐
Learning (ML) or Ordóñez‐2012 Inventory, Compared to NCAR TOGA, UCI WAS, and NOAA PFP Measurements During ATom‐1 and ATom‐2

Species
CAM‐chem
inventory

NCAR TOGA UCI WAS NOAA PFP

RMSE (ppt) MAPE (%) RMSE (ppt) MAPE (%) RMSE (ppt) MAPE (%)

CHBr3 OASISS/ML 0.34 40 0.51 136 0.22 28
Ordóñez‐2012 0.58 71 0.51 124 0.52 76

CH2Br2 OASISS/ML 0.30 44 0.27 39 0.22 25
Ordóñez‐2012 0.37 59 0.24 35 0.18 21

Note. CAM‐chem=Community AtmosphericModel with chemistry; OASISS =Online Air‐Sea Interface for Soluble Species; NCARTOGA=National Center for
Atmospheric Research Trace Organic Gas Analyzer; UCI WAS = University of California, Irvine Whole Air Sampler; NOAA PFP = National Oceanic and
Atmospheric Administration Programmable Flask Package.

10.1029/2019JD031288Journal of Geophysical Research: Atmospheres

WANG ET AL. 17



emissions and local conditions. Overall, the observed mean surface atmospheric concentrations, as well as
the seasonal and spatial variations of CHBr3 and CH2Br2, are reasonably captured by the new model
framework. Additionally, the modeled vertical distributions of CHBr3 and CH2Br2, using both the new
online bottom‐up oceanic emission inventory (this work) and a successful top‐down inventory (Ordóñez
et al., 2012), are also compared to the global airborne measurements using three measurement techniques
(NCAR TOGA, UCI WAS, and NOAA PFP) in both boreal summer and winter (ATom‐1 and ATom‐2).
The performance of the new online bottom‐up inventory (this work) is comparable to the Ordóñez‐2012
inventory, with better agreement in the Southern Hemisphere and the Southern Ocean. Note that the three
sets of observations sometimes show substantial discrepancies especially during ATom‐2, which are larger
than the differences between the CAM‐chem modeling results using different inventories, and further
investigation is warranted. The global annual oceanic Br‐VSLS emissions estimated in this work are gener-
ally comparable to previous estimates but show considerable discrepancies with other recent bottom‐up
approaches in the Southern Ocean in boreal summer, which are not fully understood. It is notable that
the new online bottom‐up oceanic inventory (this work) predicts quite high emissions of CHBr3 over the
Indian Ocean, the Bay of Bengal, and the South China Sea, partially due to the lack of surface seawater
measurements of CHBr3 in the machine‐learning training data set (HalOcAt).

The new oceanic emission framework is in general more skillful in reproducing the seasonal and vertical dis-
tributions of CHBr3 and CH2Br2 compared to the widely used top‐down approaches. The ocean biogeochem-
istry control on the synthesis of the Br‐VSLS in the seawater is captured by the machine‐learning emulator,
and the performance can be further improved once more seawater concentration observations become
available, in particular, long‐term (multiseasonal) observations in coastal and near sea ice regions, as well
as in the western Pacific. This new framework, calibrated by present‐day observations (surface seawater
and atmosphere), can be used to investigate the future and past oceanic emissions of Br‐VSLS under
different climate scenarios. Last but not least, we show that this machine‐learning emulator provides a fairly
accurate, while computationally inexpensive, alternative (compared to a detailed marine ecosystem model)
for chemistry‐climate models for representing the air‐sea exchange of other climate‐relevant trace gases,
such as dimethyl sulfide and nitrous oxide.
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