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Abstract The effect of the Madden‐Julian Oscillation (MJO) on springtime Antarctic ozone variations is
revealed for the first time frommulti‐satellite reanalysis andmodel simulations. Twenty to 30 days afterMJO
Phase 8 (P8), Antarctic total column ozone (TCO) anomalies significantly decrease by up to −15 DU,
associated with a wave‐1 response at around 60°S. After MJO P8, MJO‐related geopotential height anomalies
in the southern hemispheric (SH) Indian Ocean emanate from subtropics to polar regions, leading to
suppressed upward and poleward propagation of planetary waves (PWs) and weakened Brewer‐Dobson
circulation in the SH stratosphere. This in turn results in less ozone transport from midlatitudes into the
polar region and thus a negative polar TCO response. Dynamical transport plays a dominant role in
modulating the Antarctic TCO after MJO P8. The magnitude of transient changes due to chemical processes
is relatively weak than that caused by dynamical transport.

Plain Language Summary This investigation explores how the southern hemispheric
circulation and Antarctic ozone vary in response to a dominant tropospheric intraseasonal phenomenon
known as the Madden‐Julian Oscillation (MJO), which is characterized by globally coherent variations in
tropical convective activity with a time scale ranging from 30 to 80 days. The MJO‐related perturbations can
modulate the atmospheric circulation in the southern hemispheric stratosphere. The deceleration of the
atmospheric circulation in the lower stratosphere decreases the transport of ozone‐rich air from lower
latitudes to the polar region, which then leads to significant ozone perturbation over Antarctica after certain
phases of the MJO.

1. Introduction

Stratospheric ozone protects life on Earth by strongly absorbing harmful solar ultraviolet radiation
(Longstreth et al., 1995; Slaper et al., 1996; Van der Leun et al., 1995). It also plays an important role in mod-
ulating the global climate system by partly controlling the large‐scale atmospheric circulation via its radiative
impact and radiative‐chemical‐dynamical feedbacks (e.g., Calvo et al., 2015; Feldstein, 2011; Gillett
et al., 2019; Kang et al., 2011; Smith et al., 2010; Son et al., 2008; Thompson et al., 2011; Xie et al., 2016). It
has been well established that planetary waves (PWs) propagating into the stratosphere have considerable
impact on the ozone hole through both dynamical and chemical processes (e.g., Fusco & Salby, 1999;
Randel et al., 2002; Solomon, 1999) by modulating the residual circulation and the polar vortex. The sea sur-
face temperature and convective activity variations in the tropics have been shown to modulate the lower‐
stratospheric ozone at southern high latitudes during the austral spring (e.g., Hurwitz et al., 2011, 2013;
Lin et al., 2012; Tian et al., 2017).

The Madden‐Julian Oscillation (MJO), which is the dominant mode of tropospheric intraseasonal oscilla-
tion, is characterized by a repeated eastward‐propagating perturbation in deep convection and a coupled cir-
culation (Madden & Julian, 1971, 1972) having a period of ~30–80 days (e.g., Zhang, 2005). Recent studies
suggested that MJO‐induced diabatic heating excites PWs at middle and high latitudes (Ferranti et al., 1990;
Seo & Son, 2012) and, in turn, influences the stratosphere by modulating eddy momentum/heat transport
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(Garfinkel et al., 2014; Kang & Tziperman, 2017, 2018). Observations (e.g., Wang et al., 2018; Yang
et al., 2017) show variations in the circulation and temperature in the polar stratosphere of the Southern
Hemisphere (SH) and Northern Hemisphere associated with several phases of the MJO.

Many studies have shown that enhanced upward PWs propagation into the Antarctic stratosphere leads to
significant increases in total column ozone (TCO) and polar temperature in winter and subsequently less
springtime ozone destruction in the stratosphere (e.g., Lin & Qian, 2019; Randel, 1993; Rose &
Brasseur, 1985; Salby et al., 2011; Weber et al., 2011; Wirth, 1993). The cited studies focus on the
long‐term and interannual variability of stratospheric polar ozone, but we find that the Antarctic ozone aver-
aged from 70°S to the pole also shows a significant variation on intraseasonal time scales (see Figure S1 in
supporting information). The timing of the intraseasonal variability of Antarctic ozone and its possible cou-
pling with the tropospheric intraseasonal MJO activities have not yet been well established. In this study, we
explore the possible impacts of the MJO on the SH stratosphere residual circulation, Antarctic temperature,
and ozone variation during the austral spring season (September–October–November, SON hereafter). A
description of these linked perturbations will help us characterize the dynamical and chemical coupling
mechanisms between the troposphere and stratosphere.

2. Data and Methods

The daily TCO data from the Ozone Multi‐Sensor reanalysis version 2 (MSR‐2) data set (van der A et al.,
2010, 2015) from 1979 to 2014 are used in this paper. This detailed data set is produced by assimilating all
independent satellite column observations publicly available (15 data sets in total: BUV‐Nimbus4, TOMS‐
Nimbus7, TOMS‐EP, SBUV‐7, ‐9, ‐11, ‐14, ‐16, ‐17, ‐18, ‐19, GOME, SCIAMACHY, OMI, and GOME‐2), with
a horizontal resolution of 0.5° × 0.5° (latitude × longitude).

WACCM is a coupled chemistry‐climate model (Garcia et al., 2007, 2017; Hurrell et al., 2013; Marsh et al.,
2013), which is the high‐top atmosphere component of the Community Earth System Model. In this study,
we used data from a 36‐year (1979–2014) simulation of the “Specific Dynamics” (SD) version of WACCM
(SD‐WACCM), version 4, to investigate the response of Antarctic ozone and related atmospheric variables
to the MJO. SD‐WACCM is nudged to meteorological fields from Modern‐Era Retrospective Analysis for
Research and Applications reanalysis data in the troposphere and stratosphere (from the surface to 1 hPa)
(Kunz et al., 2011). With the relaxation, the MJO characteristics and the responses to it in the troposphere
and stratosphere in SD‐WACCM follow those in the reanalysis meteorological fields. This setup allows us
to investigate both the physical and chemical processes involved in the response of the Antarctic ozone to
observed MJO events.

The MJO phases are identified with the real‐time multivariate MJO (RMM) index (available at http://www.
bom.gov.au/climate/mjo/graphics/rmm.74toRealtime.txt) following the methods of Wheeler and Hendon
(2004). According to the amplitude and phase information from RMM1 and RMM2, MJO events are divided
into eight active phases that indicate the location of convective activity. To focus on the austral spring, we
use the events that occurred between September and November to construct the MJO composites. “Active
MJO days” are identified as days when the MJO's amplitude exceeds 1.5 (as in Yoo et al., 2012) for more than
five consecutive days. The results are similar when the threshold varies within the range of 1.0–2.0. An
“independent MJO event” is identified when consecutive active MJO days last for at least 5 days and are
separated by at least 7 days from any other active MJO days within the same phase. Using these criteria,
we identified 16 independent MJO Phase 8 (P8) events during September–November from 1979 to 2018
(see Table S1 in supporting information).

We will use the SD‐WACCM4 output to evaluate the continuity equation of zonal‐mean ozone concentra-
tion (e.g., Andrews et al., 1987). The continuity equation in the transformed Eulerian mean framework
can be written as

∂tO3 ¼ −a−1v*∂ϕO3 − �w*∂zO3 þ e z=H ∇ ·Mð Þ þ S; (1)

wwhere O3 denotes the ozone mixing ratio. H is the scale height, a is Earth's radius, ϕ is latitude, and z
is altitude. v* and w* in Equation 1 denote the TEM residual meridional and vertical winds defined as

v* ¼ �v − ρ0
−1 ρ0v′θ

′=θz
� �

z
and w* ¼ wþ acosϕð Þ−1 cosϕρ0v′θ

′=θz
� �

ϕ
, respectively. The overbars indicate
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zonal means, primes are deviations from it, and subscripts denote par-
tial derivatives. The total ozone tendency is divided into the change
due to transport processes that occur due to advection by the residual
circulation, the eddy effects (∇ · M), and the net ozone tendency due
to chemistry (chemical production minus loss, S). The vector M is
the eddy flux term, which is defined as

M ¼ My

Mz

� �
¼

−eZ=H v′O3′ − v′θ′∂zO3=∂zθ
� �

−eZ=H w′O3′ þ a−1v′θ′∂ϕO3=∂zθ
� �

0
B@

1
CA: (2)

Its divergence represents the diffusive effects of the eddies as well as
additional advective effects that are not represented by the residual mer-
idional circulation. The sum of the first three terms on the right‐hand
side of Equation 1 is the total ozone tendency from dynamics, while
the last term of Equation 1 is the total ozone tendency due to chemistry.

To focus on the intraseasonal time scale, we remove both the long‐term
trend and the seasonal cycle of ozone, temperature, and dynamical para-
meters. Equivalent effective stratospheric chlorine is used to evaluate the
long‐term trend of ozone. The equivalent effective stratospheric chlorine
time series used in this study corresponds to the WMO A1‐2010 scenario
and uses the method suggested by Newman et al. (2007). The long‐term
trends for temperature and dynamical variables are calculated with linear
fits. The climatological mean seasonal cycle is based on the average for
1979–2014. After removing the long‐term trend and seasonal variability,
the intraseasonal variations in ozone and all dynamical variables are

determined by applying 10–100 days band‐pass filtering. Finally, these anomalies are used to form compo-
sites of the ozone and atmospheric variations during and after MJO phases.

3. Results

Figure 1 shows the anomalous TCO in the SH polar region (area weighted over 70°S and poleward) during
each MJO phase as a function of time during the austral spring (SON) derived from the MSR‐2 ozone reana-
lysis data set and SD‐WACCM simulations. In the composite of MSR‐2 reanalysis (Figure 1a), the SH TCO
shows significant decreases with minima of approximately −15 DU seen 20–30 days after MJO P8 (16 cases)
and 15–25 days after MJO P1. Enhanced ozone is evident ~20 days after Phase 6, though this effect is not
statistically significant. The difference between negative and positive TCO anomalies reaches 22 DU,
although the positive anomalies are not significant. There are also negative TCO anomalies 10 days after
P2 and P3 (20 cases), and shortly after P6 (24 cases), which are all significant at the 90% level.

The SH polar TCO responses to the MJO in the SD‐WACCM simulation (Figure 1b) are in good agreement
with those in MSR‐2 reanalysis. For the SD‐WACCM simulation, the TCO anomalies are also significantly
negative and lag MJO P8 by ~25 days; however, the magnitudes of the minima of −8 DU are smaller than
those in MSR‐2. The TCO anomalies in MJO P8&P1 are opposite to those in MJO P6. Also, note that the
anomaly that lags MJO P6 in MSR‐2 is significant only at the 90% level. The time evolution of the TCO
response is consistent with the periodicity of the MJO. This suggests a statistically significant connection
between the Antarctic TCO variations and certainMJO phases. Themost significant Antarctic TCO response
to MJO is seen 20–30 days after MJO P8 and 15–25 days after MJO P1. In the remainder of this study, both
dynamical and chemical factors lagging MJO P8 are examined to probe the possible mechanism involved in
the MJO link to Antarctic ozone.

It is worth noting that there are also significant TCO anomalies after MJO P1 at lags of ~20 days. Due to the
cyclic nature of the MJO and the lag in the response, these MJO P1 and P8 cases often occur within the same
MJO cycles. To account for this, the inactive MJO P8 events that are followed by an active P1 event are also
identified as an active event. The category of active MJO P8 that includes inactive periods that are followed

Figure 1. Antarctic total column ozone anomalies (DU) from MSR‐2
at different lags with respect to MJO phases during September to
November from 1979 to 2014. The white and light‐gray areas denote
significance at the 95% and 90% levels, respectively, according to the
Student's t test. (b) is the same as (a) but for SD‐WACCM simulation from
1979 to 2014. The contour intervals are 1 DU.

10.1029/2020GL088886Geophysical Research Letters

YANG ET AL. 3 of 9



by active P1 events is labeled as “extended MJO P8.” Using this adjusted criterion for active MJO events,
most of the active MJO P1 cases are also considered in the composite of MJO P8. There are 26 extended
MJO P8 active cases (10 were added by the P1 extension just described) during SON from 1979 to 2014;
only 4 among 23 active MJO P1 cases are excluded from the extended composite.

Figures 2a and 2b show the composition of MSR‐2 TCO anomalies for 10–20 and 20–30 days after the
extended MJO P8. In the SH polar region 10–20 days after the extended MJO P8, there is a region of signifi-
cantly negative TCO anomalies centered at 70°S, 180° with the minimum of approximately −14 DU. The
TCO anomalies in the eastern hemisphere (centered at 60°S, 30°E) are significantly positive and make up
part of a wave‐one pattern at 60°S. Twenty to 30 days after the extended MJO P8, the negative anomalies
in TCO extend poleward and become more pronounced (−17 DU). Meanwhile, the wave‐one pattern at
approximately 60°S has shifted eastward; the negative anomalies are centered at 140°W and the positive
anomalies at 60°E (although the positive anomalies are less significant at this lag). In the SD‐WACCM simu-
lation (Figure 2c), the pattern of SH TCO anomalies 10–20 days after the extended MJO P8 is similar to that
in the MSR‐2 reanalysis. However, the magnitude of the anomalies is generally smaller, and the negative
anomalies in the polar region are not significant. From Days 20 to 30 after the extended MJO P8
(Figure 2d), the anomalous TCO in SD‐WACCM suggests a significant decrease in the SH polar region,
which agrees well with that in MSR‐2. Since the TCO response to the MJO in the SD‐WACCM simulations
is in good agreement with that in theMSR‐2multi‐satellite reanalysis, the dynamical and chemical processes
in SD‐WACCM are investigated to explore the possible mechanism by which the MJO modulates the SH
TCO during certain phases.

The MJO has been shown to modulate PWs at middle and high latitudes in the troposphere (e.g., Matthews
& Meredith., 2004); these in turn affect the stratosphere (e.g., Yang et al., 2017). The anomalies in polar

Figure 2. Southern hemispheric MSR‐2 total column ozone (TCO) anomalies for (a) 10–20 days and (b) 20–30 days after
the extended MJO P8. The contour intervals are 2 DU. Stippling indicates statistical significance at the 95% level
according to the Student's t test. (c) and (d) are the same as (a) and (b) but for the SD‐WACCM simulation.
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stereographic charts of 500‐hPa geopotential height (Z), 169‐hPa Z, and 100‐hPa temperature (T) are
investigated to explore the dynamical nature of the TCO response to MJO. As extratropical TCO is more
readily relatable to temperature anomalies than to height anomalies, the anomalies in temperature are
used to investigate the variations in the SH polar vortex. Here 100‐hPa Z is not shown since it is similar to
the 100‐hPa T patterns.

Ten to 20 days after MJO P8 (Figure 3a), an anomalous cyclone at 500 hPa near 30°S over South Africa
stretches southeastward across the Southern Indian Ocean toward Australia. Poleward of the low at South

Figure 3. September–November climatological mean of 500‐hPa geopotential height departure from zonal mean (contours) and geopotential height anomalies
(shading) during (a) 10–20 days and (b) 20–30 days after the extended MJO P8 (shading) from SD‐WACCM simulation. Stippling indicates statistical
significance at the 95% level according to the Student's t test. (c) and (d) are the same as (a) and (b) but for 163‐hPa geopotential height; 100‐hPa temperature
residuals during (e) 10–20 days and (f) 20–30 days after the extended MJO P8.
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Africa and the South Indian Ocean is a ridge at 40–50°S and a trough
at 70°S, which suggests an anomalous wave train that emanates from
the subtropical South Indian Ocean to the SH polar region. These
extratropical Rossby wave trains are consistent with the wave trains
induced by anomalous MJO convection (e.g., Matthews &
Meredith., 2004; Yang et al., 2017) and are similar to the PW induced
by El Niño‐like sea surface temperature anomalies (Lin et al., 2012).
The anomalous wave train from Days 10 to 20 after the extended
MJO P8 (Figure 3a) is nearly out of phase with the climatological
mean distribution in the SH extratropical troposphere, indicating
suppressed PW activity. The geopotential height anomalies in the
SH extend well into the lower stratosphere (Figure 3c) and coincide
with the striking warm T anomalies at 100 hPa over Australia
(Figure 3e) and cold anomalies south of Australia at around 50°S.
The SH polar region exhibits a wave‐one pattern with positive T
anomalies over high latitudes of the South Atlantic and Indian
Ocean sectors and negative anomalies over the Pacific sector,
although it is not significant. The barotropic warm and cold anoma-
lies coincide closely with the ozone maximum and minimum in
Figure 2.

In the subtropics, the pattern of anomalous Z 20 to 30 days after the
extended MJO P8 (Figures 3b and 3d) has rotated eastward relative
to that during Days 10 to 20. Significant positive anomalies are seen
east of Australia near 160°E, 30°S and negative anomalies are cen-
tered at 160°W, 60°S. In the SH polar region, anomalies in both Z
and T (Figures 3b, 3d, and 3f) are amplified and become significant.
The wave‐one pattern in the SH high latitudes also rotates ~30° to

the east; the pattern now shows positive T anomalies over high latitudes of the Indian Ocean and negative
anomalies around 90°W–180°.

As a result of the suppressed PWs (Figures 3a and 3b), the residual mean meridional circulation in the SH
lower stratosphere (Figure 4a) is characterized by equatorward anomalies between 50°S and 70°S 10–20 days
after the extended MJO P8. This implies that the increase in ozone due to transport from midlatitudes to the
polar region is weakened in the lower SH stratosphere. In turn, the zonal‐mean anomalous ozone mixing
ratio becomes significantly negative 20–30 days after the extended MJO P8 at the SH polar cap region, with
the minimum located at 50–100 hPa, 70–90°S (Figure 4b). In the SH polar region, during Days 10–20 after
the extended MJO P8, there is significant anomalous upwelling below 10 hPa and anomalous downwelling
above, although the downwelling in the upper stratosphere is not significant. The meridional residual circu-
lation anomalies become marginally significant between 50°S and 70°S in the lower stratosphere during
Days 20‐30 after the extended MJO P8. The stratospheric polar temperature anomalies become negative
10 to 20 days after the MJO P8 and reach a minimum of approximately −1.5 K at 30–50 hPa afterward
(20 to 30 days) as a result of adiabatic cooling induced by anomalous upwelling of the residual circulation.
The stratospheric temperature response is similar to that induced by the warming pool El Niño (Hurwitz
et al., 2011, 2013).

Figure 5 shows the corresponding transient evolution of the zonal‐mean ozone tendencies averaged between
70°S and 90°S after the extended MJO P8. As noted earlier, the extratropical PW train excited by MJO in the
troposphere couldmodulate the poleward transport of air mass in the lower SH stratosphere. As presented in
Figure 5a, there is a pronounced negative ozone tendency in the high‐latitude stratosphere 10 to 20 days after
MJO P8 and a positive tendency beginning around 25 days. This negative stratospheric ozone tendency
reaches its minimum value at 50 hPa on Day 15. The evolution of the total ozone tendency is consistent with
the evolution of ozone transport, as indicated by the residual circulation (Figure 4b).

The colder Antarctic lower stratosphere that results from the PW anomalies is also expected to perturb the
polar ozone by modulating the chemical ozone reactions, as suggested by previous studies (Brasseur &

Figure 4. Composite of the zonal‐mean ozone mixing ratio (ppmv, shading), the
zonal‐mean temperature (K, contours), and residual circulation (gray vectors)
anomalies in SD‐WACCM during (a) 10–20 days and (b) 20–30 days after the
extended MJO P8. The violet dots indicate that the ozone anomalies are
significant at the 95% level according to the Student's t test. The thick contours
and the thick vectors indicate that the temperature and the residual
circulation anomalies are significant at the 95% level.
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Solomon, 2005; Solomon et al., 2015). Thus, we analyze the implication of transient changes in residual
circulation induced by MJO P8 on polar stratospheric ozone chemistry.

To investigate the source of the transient changes in polar stratospheric ozone after the extendedMJO P8, we
decompose the total ozone tendency into contributions from dynamics and chemistry. We find that anoma-
lies in the evolution of the total ozone tendency in the middle‐lower Antarctic stratosphere (between 10 and
100 hPa) are dominated by the dynamical terms (Figure 5b). The ozone tendency due to dynamics in the
middle‐lower stratosphere (100 and 10 hPa) is mainly due to the ozone transport via meridional
(Figure 5d) and vertical (Figure 5e) advection by the residual circulation, while eddy transport also plays a
role although the anomalies are only marginally significant (Figure 5f). The dominant role played by the
dynamical terms in driving the anomalies in total ozone tendency is consistent with the transient changes
in the residual mean transport. Conversely, the contribution of the chemistry to the anomalies in total ozone
tendency (Figure 5c) is only significant at around 30 hPa at lags of approximately 25 days. The anomalous
positive ozone tendency due to chemistry is likely associated with less chemical ozone loss due to decreased
temperature there (Figure 4b). This is consistent with the ozone sink reactions in the middle‐upper

Figure 5. Evolution of the ozone tendencies (mass weighted with respect to 10 hPa) for the composite of 0–30 days after MJO Phase 8 as a function of time and
pressure, averaged from 70°S to 90°S from SD‐WACCM: (a) total ozone tendency and (b) ozone tendency anomaly due to dynamics and (c) due to parameterized
chemistry. Tendency due to dynamics is decomposed into (d) vertical advection, (e) meridional advection, and (f) eddy transport effects. Stippling indicates
statistical significance at the 95% level according to the Student's t test.
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stratosphere, which are strongly dependent on temperature (Brasseur & Solomon, 2005). However, the magni-
tude is relatively weak compared to that caused by dynamics. These results suggest that MJO‐induced transient
changes in the polar stratospheric ozone are primarily due to changes in dynamical ozone transport.

4. Conclusions

A significant connection is revealed between the Antarctic TCO and certain MJO phases (P1 and P8), as sug-
gested by multi‐satellite assimilation and a whole atmosphere model simulation. The difference between the
negative and positive TCO anomalies in the SH polar region reaches 20 DU over the period 0 to 30 days after
MJO P8. There is also a wave‐one response of TCO in the middle latitudes of the SH. During 10 to 20 days after
MJO P8, the anomalous Z are nearly out of phase with the climatological mean distribution in the SH extratro-
pical troposphere. An anomalous extratropical wave train propagates from the subtropical Indian Ocean to the
high latitudes in the SH and leads to wave‐one Z and T responses in the high latitudes. This thermal structure
extends into the stratosphere in the SH polar region. The suppressed upward propagation of PWs leads to an
equatorward anomalous residual circulation in the SH stratosphere, which results in a deceleration in the pole-
ward air mass transport in the lower SH stratosphere. As a result, a significant negative ozone tendency is
observed at 50 hPa, 70–90°S, which contributes to the negative anomaly in TCO 20–30 days after MJO P8.

The perturbations to the normal seasonal total ozone balance in the middle‐lower Antarctic stratosphere
(10–100 hPa) are dominated by the dynamical terms; the largest contributions are from the ozone transport
via meridional and vertical advection by the residual circulation. The magnitude of transient changes due to
chemistry is relatively weak compared with that caused by dynamics.

Data Availability Statement

The ERA‐Interim reanalysis data were downloaded online (http://apps.ecmwf.int/datasets). The real‐time
multivariate MJO (RMM) index is available online (at http://www.bom.gov.au/climate/mjo/graphics/
rmm.74toRealtime.txt). EOS MLS L2 version 4.2 is available online (at https://mls.jpl.nasa.gov/data/). The
model outputs used in this work are archived on the Open Science Framework at https://doi.org/
10.17605/OSF.IO/MW9H8 and are publicly available.
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