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10.1 Filtering Time Series

- 10.1.1 Introduction

The analysis of time series in physical sciences usually involves proce-
dures such as differentiating, integrating, smoothing, extrapolating, or re-
moval of noise. These all involve linear transformations of the original data,
and the application of a linear transformation to a time series may be viewed
as some sort of digital filter applied to that time series. In this section some
general aspects of applying filters to time series are discussed. The behavior
of a filter is often characterized in terms of its Jrequency response function;
the motivation behind this concept is discussed, and the frequency response
function is calculated for several examples. Next, the technique of designing
a digital filter for a desired frequency response is discussed, including a
simple FORTRAN subroutine for calculation of digital filter weights. Finally,
the method of filtering time series by direct Fourier analysis-resynthesis is
discussed. The fine details of filtering time series can be a father complex
subject, and several textbooks can be found that discuss these details (the
book Digital Filters by R. W. Hamming [1] is a very readable and useful
reference). The objective of this chapter is to give a brief introduction to
some of the more practical aspects of using digital filters.

In practice, a digital filter is applied to a time series u(#) by forming
weighted linear combinations of successive subsets of the time series; letting
c(k) denote the weights, this produces a new *“filtered” time series y(1):

M
Y0 =3 - ut - k (10.1)
k=~-M
This process is termed a convolution of the data u(r) with the filter coeffi-
cients c(k). The total number of filter coefficients here is (2M + 1). Note
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that the new or filtered time series y(¢) is shorter on each end than the
original time series by M points.

A familiar example of this procedure is the smoothing of data by applica-
tion of a “running 3-point average” or a “1-1-1 moving average” filter.
The smoothed or filtered data is given by an average of three successive
input values:

y(&) = [u( + 1) + u(@®) + u(t — 1))/3

This is represented by (10.1) with M = 1 and c(k) = 1/3. This is the
simplest type of filter to consider, called a nonrecursive filter, because it
uses only the original time series as input data. Filters may also be considered
that use prior calculated values of the output, e.g.,

M L
yoy = > ctk)y-ut — k) + > d) -yt - D

These are termed recursive filters. For a given filter length M, recursive filters
have better frequency response characteristics than nonrecursive filters, but
they require more computational expense. Furthermore, their analysis is
somewhat more complex, and the focus here is on nonrecursive filters.

10.1.2 Frequency Response of a Filter J

Digital filters represent linear transformations of time series. In order to
understand specifically what occurs in the transformation, it is useful to
consider the process in the frequency domain. The frequency response of
afilter indicates the transformation that occurs for each frequency component
of the input and output time series. To transform to the frequency domain,
begin by considering the (complex) finite Fourier series expansion of the

time series y() ¢ = 0,1, . . . ,N = 1)
- 1%
) = 5 y0) - e (10.2)

=0

The discrete angular frequencies w; are given by w;, = (27/N) -+ j, with
j=~-N2+1,...,-1,0,1, ..., N/2. For a real function y(f), the
positive and negative frequency coefficients are complex conjugates, i.e.,
¥(w) = y * (w_)). The inverse transform is

N2
yo= 3 w)-e (10.3)
j=—N2+1

The total variance of the time series y(f) may be equated to the sum of the
squared harmonic coefficients according to
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Variance [y()] = 7. > ) - P

. (10.4)
=3 2 [k

J=1
where y is the average value of y(1). A plot of 2 - [j(w))}? versus w is termed
a periodogram; this quantity measures the contribution of oscillations with
frequency near w; to the overall variance of the time series y(¢). Such a
diagram is similar to the sample spectral power density, although the quantity
2 - |[p(w)f? is not a good estimate of the “true” underlying spectral density,
because it is biased and its uncertainty does not decrease as the sample size
increases. These factors are discussed in more detail in Chapter 11, along
with techniques for the proper and consistent estimation of the spectral
" power density. :

Now consider the frequency transform of (10.1):

N-1I

) = > y(0) - e

t=0

N1 M
=3 | 3 otk utt — k) femir | (10.5)
1=0 | k=M
M N-1
= 2 c(k) - e~k - 2 u(t — k) - e-iwt=n
k=-M =0

= ¢(w)) * u(wy)

This result shows that the frequency coefficients of the filtered data y(w))
are equal to the frequency coefficients of the original time series u(w;),
multiplied by the frequency transform of the filter coefficients ¢(«;). The
frequency transform ¢(w;) thus measures what the filter does to each fre-
quency coefficient and is termed the frequency response of the filter. Because
¢(w;) is in general a complex quantity, it is composed of both amplitude
and phase components. In terms of spectral power densities (10.4),

Pw)l = [e@)l? - la(w)? (10.6)

i.e., the spectral power density of the filtered data at each frequency is
|c(w;)]? times the power density of the input time series.

Examples of the frequency response of several filters are included here
to get a feeling for its use and meaning. The frequency response is calculated
directly from the discrete transform equation:
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M

2 C(k) o @-iujk

k=-M

c(w) =
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(10.7)

For simple filters, the summations can be done directly; more complicated
filters require computer calculations.

Example 1: We examine the frequency response for a 1-1-1 moving

average filter. This

is a filter with coefficients

c¢(—-1)=1/3
c0) = 1/3
c(l) =173

Using (10.7) the frequency response is evaluated as

c(wy) = %(e-"mi +1 + e“""!)

l (1 + 2 coswy)

w

(10.8)

This response is shown in Fig. 1 as a function of frequency and wavelength
(measured in terms of grid spaces or sampling intervals). In this and the
following figures the physical frequency (f = w/2w) is used as abscissa,
with units of (1/unit time) or (1/grid spacing). This response function shows
the fraction of wave amplitude at each frequency that is passed through
this filter. The response is near 1.0 at very low frequencies, denoting that

1.0

RESPONSE
Fod
w®

o

-0.5

WAVELENGTH (grid spaces) .
0 10 5 3

— N

114 movlng average
/ (example 1

Low filter
\ (sxaglgfes 2)

/,

I I X U T OO IO O O O I I

0 0.1 0.2 0.3 0.4 0.
FREQUENCY

(3]

FIG. 1. Frequency response function calculated from (10.7) for the 1-1- 1 moving
average filter (Example 1) and low-pass filter (Example 2).
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low-frequency oscillations (long wavelengths) are nearly unaffected by this
filter. Conversely, higher frequency oscillations (shorter wavelengths) are
selectively damped out; fluctuations near frequency 0.3 (3-grid space wave-
length) are almost completely eliminated. This type of filter is termed a
low-pass filter, because low frequencies are passed through while high
frequencies are removed. This agrees with the intuitive knowledge that
application of a 1-1-1 moving average removes high-frequency ‘“‘noise”
from a time series.

Note that the response function for this filter (10.8) is real valued, and
this denotes that the phase of each frequency component remains unchanged
by this filter. This is a general result for symmerric filters; i.e., ones with
c(—k) = c(k), and it is often a desirable property to be used in designing
a filter. The negative response at high frequencies in Fig. 1 simply means
. that the input and output frequency coefficients are oppositely signed (i.e.,
that these frequency components in the filtered data will have opposite sign
to those in the original time series).

To clearly show this transformation in the frequency domain, the sample
spectral density function of a time series is examined before and after
application of this filter. Figure 2 shows a time series of east-west winds
near an altitude of 15 km, measured over Canton Island (near the equator
in the central Pacific ocean) during 1960-1962. (This is a subset of a time
series which was used to first discover the presence 'of a *“40-50 day
oscillation™ in the winds, temperatures, and pressures over the Pacific Ocean
[2]; this oscillation is now recognized as an important mode of atmospheric
variability in the tropics.) Figure 3(a) shows a smoothed version of the
spectral power density calculated from this time series, using the standard
techniques discussed in Chapter 11. The spectral power density shows a
strong peak in the frequency band .020-.025 days-' (wave periods of 40-50
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FiG. 2. Time series of east-west wind speed (m/s) near an altitude of 15 km,
measured over Canton Island (in the equatorial Pacific Ocean) during 1960-1962.
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FI1G. 3. Spectral power density calculated from the Canton Island time series in
Fig. 2, (a) before and (b) after applications of a 1-1-1 moving average filter.

days), and near constant power at frequencies greater than f = .1-.2. Figure
3(b) shows the power spectral density for this time series after application
of a 1-1-1 moving average filter. The spectral signature shows that the high
frequency components (f > 0.2) have been selectively damped out. Note
from (10.6) that the power spectral density for the filtered data is equal to
that for the original data, multiplied by the square of the frequency response
function (the square of the curve shown in Fig. 1). There is a small residual
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of power between f = 0.4-0.5 in the filtered data in Fig. 3(b), due to the
nonzero filter response seen for this frequency range in Fig. 1.

Example 2: We now look at a “better” low-pass filter. The nonzero
frequency response of the 1-1-1 moving average filter near frequency
f = 0.5 (see Fig. 1) means that some high-frequency components still
remain in the filtered data. This may not be important for the time series
in Fig. 1 because there is relatively little power at high frequencies; however,
in general a more ideal low-pass filter would have a response function that
approaches 0 at all frequencies above some high-frequency cutoff limit £,
An example of such a filter is given by the filter coefficients

c(0) = 0.260000
c(l) = 0.217069
c(2) = 0.120215
c(3) = 0.034124
c(4) = 0.002333

and again the filter weights are symmetric ¢(— k) = c(k). These filter weights
were calculated by the subroutine included in Section 10.1.3 (see discussion
later). The frequency response function for this filter is shown as the dashed
curve in Fig. 1, as calculated by numerical summation of (10.7). The response
is near 1.0 at low frequencies and near 0.0 at high frequencies, with a
transition region near f = 0.1-0.2 (i.e., this filters most of the oscillations
with periods shorter than 5-10 days). The width of the transition region
(where the response goes from 1.0 to 0.0) is directly related to the number
of coefficients chosen for this filter (in this case M = 4). The use of more
filter coefficients will result in a sharper transition region, but at the cost
of losing more data at the beginning and end of the filtered time series. In
practice, the user must balance the choice of sharper frequency cutoff versus
longer filter length for the specific time series at hand. In this example
relatively few coefficients have been used, with the result that the transition
region is broad. The result of this filter applied to the Canton Island time
series is shown in Fig. 4, clearly showing the smoothing effect of a low-
pass filter; note that four data points have been lost from the beginning and
end of the filtered data.

The simple computer subroutine used to generate these low-pass filter
coefficients will also generate coefficients for high-pass filters (which pass
high frequencies and remove low-frequency components) and bandpass
filters (which pass frequencies only over a specified frequency band). An
example of the latter is included later (Example 4).
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FIG. 4. Time series of Canton Island winds (Fig. 2), after application of the low-
pass filter of Example 2.

Example 3: Finite difference approximations to derivatives are common
calculations made on time series. The finite difference operators used to
approximate derivatives are digital filters; the associated frequency response
functions indicate how accurate the finite approximations are. Consider first
the common centered difference operator

YO = [ut + 1) — w(t - 1))/2

This is a filter with coefficients

c(—-1)= -1/2
c(0) =0
(1) = 172

The frequency response for this filter is given by (10.7):

Hwyp) = %(—e"“’i + i)

= isinw;

Now for each spectral component y(f) = e, the “true” derivative is given
by y'(f) = iwy(t). The ratio of the calculated estimate of the continuous
derivative to the true value is thus

calculated _ Sinoy; (10.9)
true w; '

This calculated-true ratio was not explicitly considered in Examples 1 and
2, because there the ratio of the output to the input is the natural comparison.
However, for derivatives (or integrals) the calculated result should be com-
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pared to the ideal result; in both cases the ratio is viewed as a transfer or
frequency response function.

The response curve corresponding to (10.9) is shown in Fig. 5. It shows
that the derivative estimated from the [u(t + 1) — u(r — 1))/2 formula is
very accurate (response near 1.0) for low-frequency waves, but that the
estimate is rather poor for very high-frequency oscillations (wavelengths
shorter than 5 grid spaces).

A better finite difference approximation to a continuous derivative can
be devised by using more filter weights. Again, the disadvantage is that
more data are lost at the beginning and end of the filtered time series. Using
M = 3, the following formula can be obtained (Section 7.2 of [3]):

y&) = [u(t +3) —9-ut+2) +45-u(t+ 1) —45-u(t - 1)
+ 9-ut — 2) — ut — 3))/60

Here the ratio of the calculated—true response is given by

calculated - 45 « sin w;, — 9 - sin(2w,) + sin(3w))
true 30 - oy

This response is shown as the dashed line in Fig. 5. Note the substantial
increase in accuracy for wav-le~::s of 3-5 grid spaces compared to the
simpler formula.
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FI1G. 5. Calculated vs. true ratio of derivatives estimated using the 2-point and
6-point centered difference operators (Example 3).



292 FILTERING AND DATA PREPROCESSING FOR TIME SERIES ANALYSIS

10.1.3 Designing a Digital Filter

In this section the technique of designing a specific nonrecursive digital
filter is reviewed. This discussion includes low-pass, high-pass, and band-
pass filters that have symmetric filter coefficients (¢( - k) = c(k)), and he.nce
no phase distortion between input and output time series. In the last section,
the filter frequency response function was calculated as the finite Fourier
transform of the filter coefficients (10.7). In order to derive filter weights
c(k) for a desired frequency response function ¢(w;), the inverse transform
is used (written here in integral form):

k) = ﬁ j Hw) * e dw (10.10)

Now since ¢( — k) = c(k), only the cosine terms are included in the expansion:

k) = % f &(w) * cos(wk)dw (10.11)

Ideally, one would need an infinite number of coefficients c(k) to exactly
match an arbitrary frequency response function ¢(,). In practice, the number
of terms must be truncated to a finite length M. This truncation produces
arippling effect in the frequency response function called the Gibbs phenom-
enon, and such ripples are a generally undesirable feature for digital filters
(the nonzero frequency response of the 1-1-1 moving average filter near
f = 0.4-0.5 (Fig. 1) are an example of such ripples). These ripples in the
response function can be reduced by applying a set of weights w(k) to the
filter coefficients c(k) to produce a new set of coefficients c'(k); i.e.,

c'(k) = c(k) + wik)

These filter weights w(k) are sometimes termed a window through which
one “sees” the filter weights c(k). The process of truncation of the infinite
series c(k) to finite length M can be viewed as using a rectangular window
(w(k) = 1 fork = 0-M, and w(k) = 0 otherwise). The practical choice of
weighting coefficients or “window shape” depends on several factors and
is discussed in detail in Chapter 5 of [1].

One commonly used window or set of weight coefficients with the nice

property that it removes a large fraction of the ripple effect is termed the
Lanczos window:

0 = sin(wk / M)
wik) wkiay <M (10.12)

= 0 k=M
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This window is used in the calculations that follow. Other choices of win-
dows may be more suited to particular problems, such as the Kaiser window
([1], Chapter 9), which produces sharper transition regions than the Lanczos
window, but also results in larger frequency response ripples.

A simple FORTRAN subroutine is included here for generation of win-
dowed filter weights for low-pass, high-pass and bandpass filters. These
filters approximate idealized rectangular cutoff frequency response functions
with bounds at f,,. and f,..; i.e.,

c(w)

w
1 ﬁow = % sﬁﬁgh (10.13)
= 0 otherwise

Note that for low-pass filters f,,.. = 0.0, and for high-pass filters f,,, =
0.5. The untruncated Fourier expansion for c(k) (10.11) can be evaluated
using (10.13):
2afhigh
ck) = % cos(wk)dw

27fiow

The unweighted coefficients are then expressed as

C(O) = z(f;ﬁgh - ﬁnw)

| . 10.14)
o) = = [SInCTkig) — Sin(2mifn)] (
Finally, these coefficients (10.14) are weighted by the appropriate Lanczos
window weights (10.12) to give the final filter coefﬁcientg.’ c'(k).

subroutine makefilt (flow, fhigh, nterms, coeffs)

design nonrecursive bandpass digital filter using Lanczos
window
= output a symmetric set of filter weights

input:
flow - low frequency cutoff (0.0 for a low pass
filter)
fhigh - high frequency cutoff (0.5 for high pass
filter)
(frequency units are inverse time or
grid space intervals)

0N o0 oonoo0o0oo0oo0n0aaon




-

294 FILTERING AND DATA PREPROCESSING FOR TIME SERIES ANALYSIS

nterms - resulting digital filter length is
(2*nterms+1)

- note that the Lanczos weight factor for k= +/-
nterms is zero, so that the filter truncation
point is actually (nterms-1)

output:
coeffs - digital filter coeffecients

* the maximum (nterms) here is 100, but this can be easily
modified

A nNnooonnao0ooao0aa

dimension coeffs(-100:100),wt (-100:100)
do 101 k=-100,100
coeffs (k)=0.
wt (k)=0.
101 continue
c
c calculate unweighted coefficients
c
coeffs (0)=2.*(fhigh-flow)
do 201 k=1,nterms
tpkfh=2.%*3.1415926*k*fhigh
tpkfl=2.*%*3.1415926*k*flow
coeffs(k) = (sin(tpkfh)-sin(tpkfl))/(k*3.1415926)
201 continue ’

now calculate Lanczos weights (sigma factors)
{or can substitute a different window here
such as the von Hann or Kaiser windows)

o o0 n0 o0 n

wt (0)=1.0
do 301 k=1,nterms-1
phi=3.1415926*float (k) /float (nterms)
wt (k) =sin(phi) /phi
301 continue
c

c weighted filter coefficients
c

do 401 k=0,nterms
coeffs(k)=coeffs(k)*wt (k)
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401 continue
symmetric filter weights

do 403 k=1,nterms

coeffs(-k)=coeffs (k)
403 continue

return

end

This subroutine generated the set of coefficients used in Example 2 by
setting f;,.. = 0.0, fi;.s = 0.13, and M = 5 (the Lanczos weights are 0 for
the k = M term, so that the filter is effectively truncated at k = M — 1).

Example 4: As one further example, a bandpass filter is designed to
specifically isolate the 40-50 day oscillations in the Canton Island wind
time series. The idealized rectangular frequency response function is chosen
such that f;,. = 0.013 and f,,, = 0.031 (ideally retaining periods in the
range 32-77 days). This is a very narrow spectral band and requires a large
number of filter coefficients for an accurate approximation; here M = 60
is chosen (so that 60 days of data are lost from each end of the time series).
The frequency response of this filter is shown in Fig. 6 (note that the
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FiG. 6. Smooth continuous line shows frequenc i

1G. y response function for bandpass
digital ﬁltel: of Example 4; dashed lines show idealized rectangular response \l:/ith
frequency limits f,,. = 0.013 and fy,, = 0.031. The trapezoid-shaped curve shows
the frequency response function used in the direct Fourier analysis-resynthesis

(c).a(l)c::)la(t)x.tl)g .of Section 10.1.4. Note the abscissa in this figure only covers frequencies
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frequency range plotted in Fig. 6 is only f = 0.0-0.1). The resulting
filtered time series is shown as a solid line in Fig. 7, isolating the 40-50
day period oscillations. Note the amplitude modulation of the 40-50 day
oscillation in time, with maximum amplitudes over January-February for
both years.

10.1.4 Filtering via Direct Fourier Analysis~Resynthesis

An alternative method for filtering time series is to use a direct Fourier
analysis to obtain frequency coefficients, truncate the coefficients in such
a manner so that only a specified frequency band is retained, and then
resynthesize the time series using the truncated coefficients. This method
is easily implemented by the use of direct and inverse fast Fourier transforms
(FFTs), which are now popular and readily available. As an example, this
procedure was used to bandpass filter the wind time series over a frequency
range similar to that chosen in Example 4. First, an FFT of the entire data
is used to generate frequency coefficients. Second, the coefficients are
weighted with the trapezoid-shaped frequency response function shown as
the heavy curve in Fig. 6; i.e., frequency coefficients outside this band are
set to 0. A trapezoid shape is chosen for the frequency window, as opposed
to a rectangular shape, because too sharp of a frequency cutoff will result
in a rippling effect in the filtered time series, an effect called ringing. Finally,
the windowed coefficients are used to synthesize the filtered time series.
The result is included as a dashed line in Fig. 7. Note the similarity to the
digital filtered data; the FFT and digital filter results would be exactly the
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FiG. 7. Time series of Canton Island winds (Fig. 2) after application of 40-50 day
bandpass digital filter (Example 4, solid line) and Fourier analysis—resynthesis
(Section 10.1.4, dashed line).
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same if the FFT window (Fig. 6) had the same shape as the bandpass filter
response function.

At first inspection it appears that the FFT filtering method is superior
to the digital filtering in that data are not lost at the beginning and end of
the time series (see Fig. 7). However, the endpoint data generated by the
FFT method are not to be believed (and should not even be displayed in
plots of filtered data). The reason for this is that the FFT analysis implicitly
assumes that the data are perfectly periodic with repeat distance N (the
length of the time series), so that the beginning and end of the time series
are implicitly tied together (see the example later in Fig. 11). Hence the
FFT bandpass filtered data near the beginning and end of the data are
contaminated from the “other” end. This effect is clearly seen upon careful
inspection of the beginning and end sections of the original (Fig. 2) versus
bandpass filtered data (Fig. 7). The original data show maxima of opposite
" signs near the ends, whereas the FFT bandpassed data show a ‘turning
over” of the curves near the ends, clearly not tracking the original data.

10.2 Data Preprocessing for Spectral Analysis

Spectral analysis is the name given to estimating the power spectral
density function (10.4) (or cross-spectral density) from time series of ob-
served data. Spectral analysis is useful in analyzing time series because it
allows for a rearranging of the data according to frequency rather than time
sequence. This is often useful in physical sciences because many phenomena
are naturally separated by their frequency characteristics (such as high-
frequency day-to-day weather variations versus low-frequency seasonal
changes). Considerations regarding the proper calculation and significance
of power and cross-spectral quantities are discussed in Chapter 11. In this
section the discussion focuses on two topics that are of practical concern for
spectral analysis: data windowing (tapering) and the removal of background
trends prior to spectral analysis. As a note, trend removal should be done
first and tapering second, prior to spectral analysis; they are discussed in
opposite order here because the concepts of data windowing and leakage
are central for understanding why trend removal is important.

10.2.1 Data Windowing (Tapering)

One fundamental problem in the proper estimation of spectral quantities
from real data occurs because the time series analyzed are of finite length.
Hence estimates of the “true” frequency spectrum of some variable are
made based on a finite length sample of that variable (a measured time
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FIG. 8. Schematic representation of a finite length time series (bottom) as an infinite
time series (top), sampled with a rectangular “boxcar’” window (heavy curve in
middle). Also shown in the middle are the Hanning and cosine-taper windows (long
and short dashes, respectively.).

series). This situation is shown graphically in Fig. 8. The observed time
series y(f) can be viewed mathematically as an infinite time series u()
multiplied by a “boxcar” function by(?) (Where bo(f) ="1 fort = -M, . . .,
M and by(f) = O otherwise; the data length N is thus 2M + 1):

y(©) = bo(t) - u(?)

Now the discrete Fourier transform (10.2) of the observed series y(f) may
be written as

) = 3y et

t=-M

i bo(t) * u(r) -« e~

= =00

«©

S b)) et S ii(wy) - e (10.15)

= —oo im—00
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)

2 l‘;((l),) ° E bo(t) + e~ Hwi—win

{= -0 1= -0

= 2 u(w) - bo(w; — )
= —c0
This shows that the frequency coefficients calculated from the observed
time series are equivalent to the “true” coefficients from an infinite time
series i(w,), convoluted with the transform of the boxcar function bo(w; —
®,). In other words, each calculated spectral estimate ¥w)) is a sum of the
“true” spectral estimates near ;, weighted with this function by(w; — ,).
From the definition of by(r), bo(w; — w,) is easily evaluated:

Bo((l)j - w,) = Z bo(t) . g=itw—wnt

M
= E e~ iwji=wm (10.16)
1=-M
o 2 * Sin((.l), - (.l),) * M

(‘Dj - )

This function is shown in Fig. 9. The finite width of the central maximum
in by(w; — w;) (called the bandwidth of the spectral analysis, because it sets
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FIG. 9. Frequency transforms of the boxcar, Hanning, and cosine-taper windows
(shown in the middle of Fig. 8), calculated as in (10.16), using M = 100 (i.e., for
a time series of length 200).
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a limit on the frequency resolution), and the presence of ripples, results in
smearing and mixing up the “true” frequency components. This general
problem is termed leakage, in that the true spectral coefficients are trans-
ferred or “leak” between adjacent and distant frequency bands. Note that,
as the length N of the time series increases, the transform function bo(w,
;) (10.16) gets narrower, and hence better estimates of the *“true” spectrum
are made for longer time series. However, this problem remains to some
degree for all finite length time series.

Several methods are used in practice in an attempt to minimize the
leakage due to the ‘“‘boxcar” sampling and associated transform bo(wj -
;). These methods are all similar in that they choose a different “window”
than the boxcar function, with the aim of reducing the ripples in the transform
b(,(w — ). These windows have smooth transitions to 0 at the beginning
and end of the data record, and this general process is termed tapering the
data. Tapering is applied to a time series by simply multiplying by the
chosen window function. One common choice is to use a cosine-shaped
window of the form

1 wt\ | _ N
b,(1) = [l + cos(M)] = COSs (ZM) (10.17)

i

This is called a Hanning window and is shown for comparison to the boxcar
window in Fig. 8. The transform of this function, b,(w; — ®)), is shown in
Fig. 9. Note that there is a reduction in the ripples compared to the boxcar
transform (and hence a reduction in leakage from ‘“distant” frequencies),
but also that the bandwidth for the Hanning window transform is approxi-
mately twice as wide (i.e:, the resulting spectrum will have less frequency
resolution). Also, the Hanning window uses only the central half or so of
the data record and will give a bit different results if the signals are not
statistically stationary (i.e., the same throughout the record). One other
frequently used window is a rectangular or boxcar function, modified so
that the beginning and end sections have a smooth cosine-tapered structure.
For example, the first and last 10% of the data may be tapered accord-
ing to

by(t) = %-1 + cos (%)] -M == _gM
4 4
= ] —_ -
5M< t<5M
= -;-_l + cos(S;;t)] %M =t1=M
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This window and its transform are shown in Figs. 8 and 9, respectively.
This *“10% cosine taper” window provides only a slight reduction in leakage
compared to the boxcar window.

The inherent problem of leakage is the reason why harmonic amplitude
estimates for individual frequency coefficients are biased and possess large
uncertainties, even for very long time series; this is why the periodogram
(10.4) is not a good estimator for the spectral power density. As discussed
in more detail in Chapter 11, one method to reduce both the bias and
variance of spectral power estimates is to average the periodogram over
the individual frequency bands. This can be done in one of two ways: (1)
averaging several different realizations of the spectra, i.e., average the power
spectra from several time series, or (2) averaging a single spectrum over
several adjacent frequency bands (i.e., applying a smoothing filter to the
. periodogram). For the latter case, the character of the resulting spectrum
depends on the degree of smoothing: averaging over few frequency bands
(narrow bandwidth) will result in many peaks in the spectrum, some of
which may be spurious, while a wider bandwidth may smooth the spectrum
so much that no peaks are distinguishable. In practice, the type of smoothing
needs to be determined for each problem at hand, usually by testing several
variations; further examples may be found in [4], [5], and [61.

An example of spectral smoothing is shown in Fig. 10, based on analysis
of a thousand point sample of the synthetic time series shown in Fig. 8.
This time series was generated by choosing two sharp spectral peaks at
frequencies f = 0.05 and f = 0.35 and adding a component of random
number generated noise to the time series (the latter adds variance to the
spectrum at all frequencies, so-called white noise). Figure 10(a) shows the
sample power spectrum obtained by applying a Hanning window (10.17)
to the data, calculating the harmonic coefficients using a fast Fourier trans-
form, and calculating the spectrum from (10.4). Note the relatively narrow
bandwidth associated with this analysis and the large variability between
adjacent frequency bands. Figure 10(b) shows the spectrum obtained using
no data tapering (i.e., the boxcar window), but with the periodogram power
estimates smoothed in frequency using a moving Gaussian-shaped filter
(whose width if indicated as BW in Fig. 10(b)). Note the much smoother
character of this spectrum compared to that in Fig. 10(a), although in this
example the spectral peaks at f = 0.05 and 0.35 are clearly evident in both
calculations. One note regarding the calculations in Fig. 10: because the
Hanning window tapers the ends of the data, the time series variance (and
spectral density estimates) are reduced compared to that for the full time
series. For direct comparisons here, the Hanning window spectral power
estimates have been multiplied by a constant factor, so that the sums over
frequency of the two spectral estimates in Fig. 10 are equal.
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FIG. 10. Sample spectral power densities calculated from 1000-point records of
the time series shown in Fig. 8. Spectra in (a) are the periodogram of the data using
a Hanning data window, while the estimates in (b) result from frequency smoothing

the periodogram derived from untapered data. BW denotes the bandwidth of the
analyses.

10.2.2 Removal of Background Trends

Another potential problem in spectral analysis of finite length time
series due to the presence of strong background signals or trends over
the length of the data record. The fundamental problem is that the
background signal contributes to additional background frequency compo-
nents, which in turn get mixed with the “‘true” coefficients via the
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leakage arguments discussed previously. One way to visualize the problem
is to note that a finite length Fourier analysis of time series u(f) (¢t =
0,1,2 ...,N — 1) implicitly assumes that the data are perfectly
periodic with a repeat distance N. This is shown schematically in Fig.
11, using for an example a 30-yr time series of atmospheric carbon
dioxide (CO,) measurements taken over Hawaii, obtained from [7]. There
is a clear increase in time (positive trend) in these data that is a result
of the systematic build-up of carbon dioxide in the atmosphere due to
burning fossil fuels; there is also a strong annual cycle related to seasonal
plant growth in the Northern Hemisphere. The result of the implicit
periodic nature of the finite Fourier transform is that the time series
effectively has the overall shape of a ‘“‘sawtooth” curve, with strong
discontinuities every 30 yrs due to the trend in the data. Power spectra

. calculated from this time series will have strong amplitudes over a broad

frequency range introduced solely as a result of this trend (and mixed
into the “true” spectrum by the leakage arguments discussed earlier).
Figure 12 compares power spectrum estimates calculated from this time
series, with and without the background trend removed. The trend was

4—————————— Time Series 'Seen’ by Finite Fourler Transfom' ————»

S\

AMSPNER!C COz CONCENTRATION

g

Actual Time Series

PARTS PER MILLION
8§ 8 8

F1G. 11. Top curve shows a schematic representation of the infinitely periodic time
series “seen” by a finite Fourier transform of the 30-yr record below. The time
series is atmospheric carbon dioxide concentration (in parts per million by volume)
measured at Launa Loa, Hawaii, over 1959-1988 [7]. Note that the strong trend
(denoted by the smoothed curve in the lower figure) introduces a *“*sawtooth’ shape
to the periodic time series above.
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FIG. 12. Spectral power density for the carbon dioxide time series in Fig. 11,
calculated before (top) and after (bottom) removal of the background trend (the
trend is indicated by the smooth curve in the lower panel of Fig. 11).

estimated with a least squares fit to a quadratic function over the 30
yrs; i.e.,

yi) = a, + a;t + a.t?

with the coefficients a,, a,, and a, calculated according to the formulas
given in Section 8.3 of [8]. This calculated background curve is indicated
in the center of Fig. 11. (The choice of using a quadratic function for the
background was somewhat arbitrary; other functional forms could have
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been chosen, or the data could be high-pass filtered to remove the slow
background trend.) Comparison of the power spectra before and after trend
removal (Fig. 12) clearly shows the spurious power introduced by the trend
in this example: note also the changed magnitude of the annual harmonic
between these two calculations and the fact that the detrended data spectrum
shows a larger peak for the annual cycle. The smaller annual cycle peak
in the original data spectrum results from the negative sidelobes associated
with the boxcar convolution function in Fig. 9, so that the annual harmonic
amplitudes (and resulting spectral power densities) were decreased by leak-
age in this example.

Trend removal is the simplest form of prewhitening of data prior to
spectral analysis. In general, prewhitening refers to some linear transforma-
tion of the data in order to get an overall smoother spectrum in frequency

. space (constant power versus frequency is termed a white power spectrum,

hence the name prewhitening). This preprocessing step can be important to
minimize the effects of leakage discussed previously.

10.3 Imperfectly Sampled Time Series

The preceding section discussed biases that occur in spectral analysis
because of finite data length and the presence of background trends. One
other subject discussed here is how to handle time series with missing data
values or time series that have unequally spaced observations. A simple
technique is shown here for the estimation of power spectra from such data.
There is one further general problem that occurs as a result of undersampling
the true variability in a time series; undersampling in this context means
not sampling frequently enough. This undersampling results in a misrepre-
sentation of the true frequency dependence of the spectrum, an effect known
as aliasing. An example of aliasing is included to illustrate this effect.

10.3.1 Calculating Power Spectra for Time Series with Missing Data

Time series may have missing data points for several reasons. Observa-
tions may simply be unavailable for certain time periods; this is a frequent
problem in historical records of meteorological data, for example. Data
values that are clearly spurious may also be present in a data record due
to some detector malfunction. Removal of these wild points (or outliers) is
important prior to subsequent spectral analyses, or else they will contaminate
the entire spectrum. There are several ways to identify such outliers; often
a simple plot of the time series will reveal obviously bad data points.
Statistical methods may also be used to identify outliers. For example, the
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standard deviation of the entire data record can be calculated, and data that
are more than (say) three standard deviations from the mean can be omitted.
In any case, we wish to consider how to calculate spectra from time series
with such missing values.

There are three straightforward methods to calculate spectra from such
time series. First, the missing data can be interpolated in some manner
(using linear interpolation or some more complicated scheme) and then
spectral analysis performed on the resulting ‘‘complete™ time series. This
is the easiest solution for a relatively small amount of missing data. The
problem with this approach in general is that structure is built into the
_resulting power spectrum by the type of interpolation used (any interpolation
scheme can be thought of as a filter, with a specified frequency response,
see [1], Section 3.7; this frequency response is then partially mirrored in
the resulting power spectrum).

Second, discrete Fourier transform coefficients can be estimated from
the time series by the least-squares fitting of the data to the individual
harmonics, one at a time. Equations for these calculations can be found in
Section 2.2 of [9].

A third technique is based on calculating the power spectrum using the
lag-correlation technique (e.g., Section 7.4 of [4]). This calculation is based
on the fact that the power spectrum is equivalept to the finite Fourier
transform of the lag autocovariance function of a time series. This technique
was a commonly used method of spectral analysis prior to the introduction
of fast Fourier transforms. Briefly the calculation is as follows:

a. Calculate the lag autocovariance function C(t) up to some finite maxi-
mum lag T:
l N-l-1 ..

C(1) = N "20 u(t) *u(t + 1) (10.18)
where the time mean values (and trends) have been removed from the
series u(t). Note that some authors choose a normalization factor of 1/
(N — 1) instead of the 1/N in front of the definition of C(1), e.g., Bath
([5], Section 3.3.3). Jenkins and Watts ([10], Section 5.3.3) discuss these
two options, choosing the 1/N expression because it has a smaller mean
squared error.

b. Calculate the (unsmoothed) power spectrum by the finite Fourier trans-
form of C(1). Because C(1) is symmetric in T, only the cosine terms
survive:

Y(w) = %[C(O) + 2 2 C(1) - cos(wT) + C(T)(—l)’] (10.19)
=1
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c. The resulting spectrum is smoothed in some manner; a common choice
is to use a running .25-.50-.25 smoothing in frequency (see Section 7.4
of [4]).

The maximum number of lags (T) is chosen based on the length of the
time series and the desired spectral resolution; it is inversely proportional
to the bandwidth of the analysis (larger T results in higher spectral resolution
but less statistical stability). In practice the user needs to choose T and the
method of smoothing the spectrum that balances resolution versus stability.

This calculational procedure is directly applicable to time series with
missing data by simply ignoring the missing data in step (a); i.e., only the
available data are used in calculating C(7):

L~-1~2

C(t) = % g ul@® - u(t + 1) (10.20)

with L being the amount of data pairs that are available at each respective
time lag. A recent example of application of this method to the spectral
analysis of satellite ozone data with missing observations is found in [11].

We test this analysis technique here by analyzing the same synthetic time
series (of length 1000) used in Section 10.2.1. The power spectrum calculated
from this time series by the lag correlation technique with maximum lag T =
500 is shown in Fig. 13. Note that this spectrum is neafly identical to that
produced by the smoothed periodogram estimate shown in Fig. 10(b); this
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FIG. 13. Power spectral density calculated from 1000 day time sample of the time
series shown in Fig. 8, calculated using the lag-correlation analysis technique
(Section 10.3.1).
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similarity is due to choosing the maximum lag (in 10.19) to be T = 500,
resulting in a bandwidth similar to that used in the periodogram smoothing.
The effect of missing data on these spectral estimates is tested by removing
some percentage of the data from the time series in a random manner and
recalculating the power spectrum. Figure 14 shows power spectra calculated
from the data with 10%, 30%, and 50% of the data randomly removed (com-
pare this to the *“‘original” spectrum in Fig. 13). For 10% and 30% of the data
missing the spectra are quite similar to the original, with a slight reduction in
intensity of the peaks and increase in the background *noise” level. The peaks
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FIG. 14. Power spectral density estimates for the same time series analyzed in Fig.
13, but with successively larger amounts of the data removed prior to calculation
of (10.20). Shown are spectra for 10% of the data missing (top), 30% and 50%
-(bottom). The spectrum for the full time series (no data missing) is shown in
Fig. 13.
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are reduced and the background increased further for the case with 50% of
the data missing, so that the peak at f = 0.35 cannot be distinguished from
other spurious maxima. If much more than 50% of the data is removed in this
example, the larger peak at f = 0.05 also becomes indistinguishable, showing
that this is near the limit where useful spectra can be calculated in this case.
Note that the sharp, well-defined spectral peaks chosen for this example (Fig.
13) make it a highly idealized case and that if the peaks were smaller they
would not stand out against the background for the 50% missing data case. In
general the amount of missing data that can be tolerated depends on the charac-
ter of the data being analyzed. For analyses of real time series, it is recom-
mended that tests similar to this one be done to determine the effects of variable
missing data.

"~ 10.3.2 Aliasing

One additional important problem in spectral analysis arises due to the
presence of variability with frequencies higher than those that can be resolved
by the sampling rate. For a given data spacing At, the highest frequency
oscillation that can be resolved is one with period 2At, or frequency f =
1/(2Ar). This high-frequency limit is called the Nyquist frequency fy. In the
case where there is substantial variability at frequencies above fy, the effect
of sampling with spacing At is that power at frequencies above f,, will
appear as power at frequencies lower than fy. This effect is called aliasing.
Specifically, power at frequencies £, 2f, = f, 4fy = f, . . . are all aliased
into (appear as) power at frequency f, due solely to the sampling rate Az.

An example is shown here based on the synthetic time series analyzed
previously, whose spectrum is shown in Figs. 10 and 13 (based on sampling
at every time step, At = 1). This same data is sampled at every second
point instead of at every point, so that At = 2 versus At = 1 previously.
The Nyquist frequency for the 2At sampled data is f, = 1/(2 * 24 =
0.25. The original power spectrum (Fig. 13) showed that there is a spectral
peak in the original data at f = 0.35, above this new Nyquist limit, so that
this power will be aliased in the new sampling at At = 2. The frequency
where this aliased power will occur is at f, = 2 v = f = 2(0.25 -
0.35 = 0.15. A power spectrum calculated from the newly sampled data
is shown in Fig. 15, and a clear peak is indeed found at f = 0.15, due to
aliasing. (One way to visualize the effect of this aliasing is that the power
in the “true” spectrum (Fig. 13) has been *““folded” back about the Nyquist
frequency fy = 0.25). Note that if the higher frequency peak in the “original”
spectrum (Fig. 13) had been located near f = 0.45, it would have aliased
onto the preexisting spectral peak at f = 0.05, so that the power for that
peak would have been severely overestimated.
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F1G. 15. Power spectral density calculated from a sample of the time series in Fig.
8, with data sampled at every second point. The Nyquist frequency is fy = 0.25.
The spectral peak near f = 0.15 results from aliasing of the power in the “true”
spectrum near f = 0.35 (shown in Fig. 13).

Note that once the data have been sampled at 2As, there is nothing to
distinguish the peak at f = 0.15 as a “false” peak resulting from aliasing;
nothing can be done once the data are sampled. The only way to avoid
aliasing is to choose a high enough sampling rate (small A¢). This is not
always an option in practice, however, and the user should be aware of
potential aliasing problems in analysis of any time series.

Acknowledgments

The author thanks Dennis Shea and Roland Madden of NCAR for helpful
discussions and Christopher Chatfield, Don Percival, John Stanford, and
Dale Zimmerman for constructive comments on the manuscript. This work
was partially supported under NASA grant W-16215. NCAR is sponsored
by the National Science Foundation.

References

1. Hamming, R. W. (1989). Digital Filters, 3d ed. Prentice-Hall, Englewood Cliffs,
NJ.

2. Madden, R. A., and Julian, P. R. (1971). “Detection of a 40-50 Day Oscillation
in the Zonal Wind in the Tropical Pacific.” J. Atmos. Sci. 28, 702-708.



REFERENCES 311

. Maron, M. J. (1982). Numerical Analysis: A Practical Approach. Collier Mac-

millan, New York.

. Chatfield, C. (1989). The Analysis of Time Series: An Introduction, 4th ed.

Chapman and Hall, London.

. Bath, M. (1974). Spectral Analysis in Geophysics. Elsevier, Amsterdam.
. Priestly, M. B. (1981). Spectral Analysis and Time Series. Academic Press,

London.

- Boden, T. A., Karciruk, P, and Farrel, M. P. (1990). “Trends *90. A Compen- '

dium of Data on Global Change.” Carbon Dioxide Information Analysis Center,
Oak Ridge, TN.

. Chatfield, C. (1983). Statistics for Technology, 3d ed. Chapman and Hall,

London.

. Bloomfield, P. (1976). Fourier Analysis of Time Series: An Introduction. John

Wiley and Sons, New York.

. Jenkins, G. M., and Watts, D. G. (1969). Spectral Analysis and Its Applications.

Holden-Day, San Francisco.

- Randel, W. J., and Gille, J. C. (1991). “Kelvin Wave Variability in the Upper

Stratosphere Observed in Satellite Ozone Data.” J. Atmos. Sci. 48, 2336-2349.



