	<i>CAGU</i> PUBLICATIONS
1 2	Journal of Geophysical Research, Atmospheres
3	
4	Supporting Information for
5	Mania bility of Churche and ania Departice. Niture new and Ocean a Delate data the ODO
6 7	variability of Stratospheric Reactive Nitrogen and Ozone Related to the QBO
/ o	M Park ¹ W Pandal ¹ D E Kinnison ¹ A E Rouracca ² D A Deconstain ² C 7 Path ² C A
0 9	M. Fark, W. J. Kander, D. E. Kinnison, A. E. Boorassa, D. A. Degenstein, C. Z. Kotri, C. A. McLinden ³ C. F. Sioris ³ N. I. Livesev ⁴ and M. L. Santee ⁴
10	
11	¹ National Center for Atmospheric Research, Boulder, Colorado, USA
12	² Institute of Space and Atmospheric Studies, University of Saskatchewan, Saskatoon, Canada
13	³ Air Quality Research Division, Environment and Climate Change Canada, Toronto, Canada
14	⁴ Jet Propulsion Laboratory, Pasadena, California, USA
15	
16	
17	Contents of this file
18	Section S1 and S2
19	Figures S1 to S3
20	
21 22	Section St. Direct Comparison of OSIPIS NO, with WACCM, Pecults
11	
 73	Section S1. Direct comparison of OSIRIS NO2 with WACCM4 Results
23 24	OSIRIS measures NO ₂ number density as a function of altitude, both in descending
 23 24 25	OSIRIS measures NO ₂ number density as a function of altitude, both in descending (morning) and ascending (afternoon) modes. Here we include direct comparisons of OSIRIS
23 24 25 26	OSIRIS measures NO ₂ number density as a function of altitude, both in descending (morning) and ascending (afternoon) modes. Here we include direct comparisons of OSIRIS NO ₂ with WACCM4 simulations sampled like OSIRIS measurements to complement the
23 24 25 26 27	OSIRIS measures NO ₂ number density as a function of altitude, both in descending (morning) and ascending (afternoon) modes. Here we include direct comparisons of OSIRIS NO ₂ with WACCM4 simulations sampled like OSIRIS measurements to complement the comparisons of daily average NO _x mixing ratios (NO _x * from OSIRIS) evaluated above. Note that
23 24 25 26 27 28	OSIRIS measures NO ₂ number density as a function of altitude, both in descending (morning) and ascending (afternoon) modes. Here we include direct comparisons of OSIRIS NO ₂ with WACCM ₄ simulations sampled like OSIRIS measurements to complement the comparisons of daily average NO _x mixing ratios (NO _x * from OSIRIS) evaluated above. Note that number density is scaled by atmospheric density compared to mixing ratios that are used
23 24 25 26 27 28 29	OSIRIS measures NO ₂ number density as a function of altitude, both in descending (morning) and ascending (afternoon) modes. Here we include direct comparisons of OSIRIS NO ₂ with WACCM4 simulations sampled like OSIRIS measurements to complement the comparisons of daily average NO _x mixing ratios (NO _x * from OSIRIS) evaluated above. Note that number density is scaled by atmospheric density compared to mixing ratios that are used throughout the rest of this paper, and hence accentuate variations at lower altitudes. OSIRIS
23 24 25 26 27 28 29 30	OSIRIS measures NO ₂ number density as a function of altitude, both in descending (morning) and ascending (afternoon) modes. Here we include direct comparisons of OSIRIS NO ₂ with WACCM4 simulations sampled like OSIRIS measurements to complement the comparisons of daily average NO _x mixing ratios (NO _x * from OSIRIS) evaluated above. Note that number density is scaled by atmospheric density compared to mixing ratios that are used throughout the rest of this paper, and hence accentuate variations at lower altitudes. OSIRIS NO ₂ data here are obtained from descending mode observations only, and after applying a time
23 24 25 26 27 28 29 30 31	OSIRIS measures NO ₂ number density as a function of altitude, both in descending (morning) and ascending (afternoon) modes. Here we include direct comparisons of OSIRIS NO ₂ with WACCM4 simulations sampled like OSIRIS measurements to complement the comparisons of daily average NO _x mixing ratios (NO _x * from OSIRIS) evaluated above. Note that number density is scaled by atmospheric density compared to mixing ratios that are used throughout the rest of this paper, and hence accentuate variations at lower altitudes. OSIRIS NO ₂ data here are obtained from descending mode observations only, and after applying a time adjustment factor, are converted to o6:30 LST measurements. The results from the WACCM4
23 24 25 26 27 28 29 30 31 32	OSIRIS measures NO ₂ number density as a function of altitude, both in descending (morning) and ascending (afternoon) modes. Here we include direct comparisons of OSIRIS NO ₂ with WACCM4 simulations sampled like OSIRIS measurements to complement the comparisons of daily average NO _x mixing ratios (NO _x * from OSIRIS) evaluated above. Note that number density is scaled by atmospheric density compared to mixing ratios that are used throughout the rest of this paper, and hence accentuate variations at lower altitudes. OSIRIS NO ₂ data here are obtained from descending mode observations only, and after applying a time adjustment factor, are converted to o6:30 LST measurements. The results from the WACCM4 simulations are sampled at OSIRIS measurements locations at o6:30 LST.
23 24 25 26 27 28 29 30 31 32 33 24	OSIRIS measures NO ₂ number density as a function of altitude, both in descending (morning) and ascending (afternoon) modes. Here we include direct comparisons of OSIRIS NO ₂ with WACCM4 simulations sampled like OSIRIS measurements to complement the comparisons of daily average NO _x mixing ratios (NO _x * from OSIRIS) evaluated above. Note that number density is scaled by atmospheric density compared to mixing ratios that are used throughout the rest of this paper, and hence accentuate variations at lower altitudes. OSIRIS NO ₂ data here are obtained from descending mode observations only, and after applying a time adjustment factor, are converted to o6:30 LST measurements. The results from the WACCM4 simulations are sampled at OSIRIS measurements locations at o6:30 LST. Altitude-time sections of the monthly anomalies of OSIRIS NO ₂ (o6:30 AM) and
23 24 25 26 27 28 29 30 31 32 33 34 35	OSIRIS measures NO ₂ number density as a function of altitude, both in descending (morning) and ascending (afternoon) modes. Here we include direct comparisons of OSIRIS NO ₂ with WACCM4 simulations sampled like OSIRIS measurements to complement the comparisons of daily average NO _x mixing ratios (NO _x * from OSIRIS) evaluated above. Note that number density is scaled by atmospheric density compared to mixing ratios that are used throughout the rest of this paper, and hence accentuate variations at lower altitudes. OSIRIS NO ₂ data here are obtained from descending mode observations only, and after applying a time adjustment factor, are converted to o6:30 LST measurements. The results from the WACCM4 simulations are sampled at OSIRIS measurements locations at o6:30 LST. Altitude-time sections of the monthly anomalies of OSIRIS NO ₂ (o6:30 AM) and WACCM4 NO ₂ sampled like OSIRIS are shown in Figure S1. Interannual variations of OSIRIS
23 24 25 26 27 28 29 30 31 32 33 34 35 36	OSIRIS measures NO ₂ number density as a function of altitude, both in descending (morning) and ascending (afternoon) modes. Here we include direct comparisons of OSIRIS NO ₂ with WACCM4 simulations sampled like OSIRIS measurements to complement the comparisons of daily average NO _x mixing ratios (NO _x * from OSIRIS) evaluated above. Note that number density is scaled by atmospheric density compared to mixing ratios that are used throughout the rest of this paper, and hence accentuate variations at lower altitudes. OSIRIS NO ₂ data here are obtained from descending mode observations only, and after applying a time adjustment factor, are converted to o6:30 LST measurements. The results from the WACCM4 simulations are sampled at OSIRIS measurements locations at o6:30 LST. Altitude-time sections of the monthly anomalies of OSIRIS NO ₂ (o6:30 AM) and WACCM4 NO ₂ sampled like OSIRIS are shown in Figure S1. Interannual variations of OSIRIS NO ₂ reveal strong correlation with the QBO zonal wind anomalies at altitudes between ~28 and as km. and show downward propagation to lower altitudes (~20-27 km). The downward
23 24 25 26 27 28 29 30 31 32 33 34 35 36 37	OSIRIS measures NO ₂ number density as a function of altitude, both in descending (morning) and ascending (afternoon) modes. Here we include direct comparisons of OSIRIS NO ₂ with WACCM4 simulations sampled like OSIRIS measurements to complement the comparisons of daily average NO _x mixing ratios (NO _x * from OSIRIS) evaluated above. Note that number density is scaled by atmospheric density compared to mixing ratios that are used throughout the rest of this paper, and hence accentuate variations at lower altitudes. OSIRIS NO ₂ data here are obtained from descending mode observations only, and after applying a time adjustment factor, are converted to o6:30 LST measurements. The results from the WACCM4 simulations are sampled at OSIRIS measurements locations at o6:30 LST. Altitude-time sections of the monthly anomalies of OSIRIS NO ₂ (o6:30 AM) and WACCM4 NO ₂ sampled like OSIRIS are shown in Figure S1. Interannual variations of OSIRIS NO ₂ reveal strong correlation with the QBO zonal wind anomalies at altitudes between ~28 and 35 km, and show downward propagation to lower altitudes (~20-27 km). The downward propagation is more prominent in number density compared to mixing ratio at lower altitudes
23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38	OSIRIS measures NO ₂ number density as a function of altitude, both in descending (morning) and ascending (afternoon) modes. Here we include direct comparisons of OSIRIS NO ₂ with WACCM4 simulations sampled like OSIRIS measurements to complement the comparisons of daily average NO _x mixing ratios (NO _x * from OSIRIS) evaluated above. Note that number density is scaled by atmospheric density compared to mixing ratios that are used throughout the rest of this paper, and hence accentuate variations at lower altitudes. OSIRIS NO ₂ data here are obtained from descending mode observations only, and after applying a time adjustment factor, are converted to o6:30 LST measurements. The results from the WACCM4 simulations are sampled at OSIRIS measurements locations at o6:30 LST. Altitude-time sections of the monthly anomalies of OSIRIS NO ₂ (o6:30 AM) and WACCM4, NO ₂ sampled like OSIRIS are shown in Figure S1. Interannual variations of OSIRIS NO ₂ reveal strong correlation with the QBO zonal wind anomalies at altitudes between ~28 and 35 km, and show downward propagation to lower altitudes (~20-27 km). The downward propagation is more prominent in number density compared to mixing ratio at lower altitudes as explained above. The WACCM4 simulations show similar interannual variations, and
23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39	OSIRIS measures NO ₂ number density as a function of altitude, both in descending (morning) and ascending (afternoon) modes. Here we include direct comparisons of OSIRIS NO ₂ with WACCM ₄ simulations sampled like OSIRIS measurements to complement the comparisons of daily average NO _x mixing ratios (NO _x * from OSIRIS) evaluated above. Note that number density is scaled by atmospheric density compared to mixing ratios that are used throughout the rest of this paper, and hence accentuate variations at lower altitudes. OSIRIS NO ₂ data here are obtained from descending mode observations only, and after applying a time adjustment factor, are converted to o6:30 LST measurements. The results from the WACCM ₄ simulations are sampled at OSIRIS measurements locations at o6:30 LST. Altitude-time sections of the monthly anomalies of OSIRIS NO ₂ (o6:30 AM) and WACCM ₄ NO ₂ sampled like OSIRIS are shown in Figure S1. Interannual variations of OSIRIS NO ₂ reveal strong correlation with the QBO zonal wind anomalies at altitudes between ~28 and 35 km, and show downward propagation to lower altitudes (~20-27 km). The downward propagation is more prominent in number density compared to mixing ratio at lower altitudes as explained above. The WACCM ₄ simulations show similar interannual variations, and correlations between OSIRIS and WACCM ₄ NO ₂ anomalies are ~ 0.50-0.83 over 46-6.8 hPa with
23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40	OSIRIS measures NO ₂ number density as a function of altitude, both in descending (morning) and ascending (afternoon) modes. Here we include direct comparisons of OSIRIS NO ₂ with WACCM ₄ simulations sampled like OSIRIS measurements to complement the comparisons of daily average NO ₄ mixing ratios (NO ₄ * from OSIRIS) evaluated above. Note that number density is scaled by atmospheric density compared to mixing ratios that are used throughout the rest of this paper, and hence accentuate variations at lower altitudes. OSIRIS NO ₂ data here are obtained from descending mode observations only, and after applying a time adjustment factor, are converted to o6:30 LST measurements. The results from the WACCM ₄ simulations are sampled at OSIRIS measurements locations at o6:30 LST. Altitude-time sections of the monthly anomalies of OSIRIS NO ₂ (o6:30 AM) and WACCM ₄ NO ₂ sampled like OSIRIS are shown in Figure S1. Interannual variations of OSIRIS NO ₂ reveal strong correlation with the QBO zonal wind anomalies at altitudes between ~28 and 35 km, and show downward propagation to lower altitudes (~20-27 km). The downward propagation is more prominent in number density compared to mixing ratio at lower altitudes as explained above. The WACCM ₄ simulations show similar interannual variations, and correlations between OSIRIS and WACCM ₄ NO ₂ anomalies are ~ 0.50-0.83 over 46-6.8 hPa with the highest correlation coefficient at 10 hPa. The WACCM ₄ NO ₂ anomalies show larger
23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41	OSIRIS measures NO ₂ number density as a function of altitude, both in descending (morning) and ascending (afternoon) modes. Here we include direct comparisons of OSIRIS NO ₂ with WACCM ₄ simulations sampled like OSIRIS measurements to complement the comparisons of daily average NO _x mixing ratios (NO _x * from OSIRIS) evaluated above. Note that number density is scaled by atmospheric density compared to mixing ratios that are used throughout the rest of this paper, and hence accentuate variations at lower altitudes. OSIRIS NO ₂ data here are obtained from descending mode observations only, and after applying a time adjustment factor, are converted to o6:30 LST measurements. The results from the WACCM ₄ simulations are sampled at OSIRIS measurements locations at o6:30 LST. Altitude-time sections of the monthly anomalies of OSIRIS NO ₂ (o6:30 AM) and WACCM ₄ NO ₂ sampled like OSIRIS are shown in Figure S1. Interannual variations of OSIRIS NO ₂ reveal strong correlation with the QBO zonal wind anomalies at altitudes between ~28 and 35 km, and show downward propagation to lower altitudes (~20-27 km). The downward propagation is more prominent in number density compared to mixing ratio at lower altitudes as explained above. The WACCM ₄ simulations show similar interannual variations, and correlations between OSIRIS and WACCM ₄ NO ₂ anomalies are ~ 0.50-0.83 over 46-6.8 hPa with the highest correlation coefficient at 10 hPa. The WACCM ₄ NO ₂ anomalies show larger amplitudes in the upper stratosphere (~28-35 km) compared to OSIRIS NO ₂ , and this behavior is
23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42	OSIRIS measures NO ₂ number density as a function of altitude, both in descending (morning) and ascending (afternoon) modes. Here we include direct comparisons of OSIRIS NO ₂ with WACCM ₄ simulations sampled like OSIRIS measurements to complement the comparisons of daily average NO _x mixing ratios (NO _x * from OSIRIS) evaluated above. Note that number density is scaled by atmospheric density compared to mixing ratios that are used throughout the rest of this paper, and hence accentuate variations at lower altitudes. OSIRIS NO ₂ data here are obtained from descending mode observations only, and after applying a time adjustment factor, are converted to o6:30 LST measurements. The results from the WACCM ₄ simulations are sampled at OSIRIS measurements locations at o6:30 LST. Altitude-time sections of the monthly anomalies of OSIRIS NO ₂ (o6:30 AM) and WACCM ₄ NO ₂ sampled like OSIRIS are shown in Figure S1. Interannual variations of OSIRIS NO ₂ reveal strong correlation with the QBO zonal wind anomalies at altitudes between ~28 and 35 km, and show downward propagation to lower altitudes (~20-27 km). The downward propagation is more prominent in number density compared to mixing ratio at lower altitudes as explained above. The WACCM ₄ simulations show similar interannual variations, and correlations between OSIRIS and WACCM ₄ NO ₂ anomalies are ~ 0.50-0.83 over 46-6.8 hPa with the highest correlation coefficient at 10 hPa. The WACCM ₄ NO ₂ anomalies show larger amplitudes in the upper stratosphere (~28-35 km) compared to OSIRIS NO ₂ , and this behavior is consistent with the comparisons for daily averaged NO _x mixing ratios discussed above (Fig. 5).
23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43	OSIRIS measures NO ₂ number density as a function of altitude, both in descending (morning) and ascending (afternoon) modes. Here we include direct comparisons of OSIRIS NO ₂ with WACCM ₄ simulations sampled like OSIRIS measurements to complement the comparisons of daily average NO _x mixing ratios (NO _x * from OSIRIS) evaluated above. Note that number density is scaled by atmospheric density compared to mixing ratios that are used throughout the rest of this paper, and hence accentuate variations at lower altitudes. OSIRIS NO ₂ data here are obtained from descending mode observations only, and after applying a time adjustment factor, are converted to o6:30 LST measurements. The results from the WACCM ₄ simulations are sampled at OSIRIS measurements locations at o6:30 LST. Altitude-time sections of the monthly anomalies of OSIRIS NO ₂ (o6:30 AM) and WACCM ₄ NO ₂ sampled like OSIRIS are shown in Figure S1. Interannual variations of OSIRIS NO ₂ reveal strong correlation with the QBO zonal wind anomalies at altitudes between ~28 and 35 km, and show downward propagation to lower altitudes (~20-27 km). The downward propagation is more prominent in number density compared to mixing ratio at lower altitudes as explained above. The WACCM ₄ simulations show similar interannual variations, and correlations between OSIRIS and WACCM ₄ NO ₂ anomalies are ~ 0.50-0.83 over 46-6.8 hPa with the highest correlation coefficient at 10 hPa. The WACCM ₄ NO ₂ anomalies show larger amplitudes in the upper stratosphere (~28-35 km) compared to OSIRIS NO ₂ , and this behavior is consistent with the comparisons for daily averaged NO _x mixing ratios discussed above (Fig. 5). The annual average profiles of OSIRIS NO ₂ (o6:30AM) and the corresponding WACCM ₄

NO₂ profiles show minima at low altitudes and maxima near ~32 km. OSIRIS NO₂ number
density is smaller than WACCM4 at all altitudes between 16-38 km, with differences (Fig. S2b)
ranging from ~ 10 to 45%. The best agreement between OSIRIS and WACCM4 (differences
smaller than 25%) is found between 23 and 35 km. We note that these differences for timeaveraged NO₂ (near o6:30) are slightly larger than for the corresponding daily average NO_x (Fig.
2b), which may suggest some small differences between the detailed NO_x diurnal variations in
WACCM4 results and those estimated by the photochemical box model applied to OSIRIS data.

The applicability of the box model in converting NO₂ to NO_x ultimately boils down to how well it can simulate the NO_y species. This was evaluated, both absolutely and in terms of the NO_x/NO_y ratio, through comparisons with observations from 10 flights of the JPL MkIV FTIR (Fourier Transform InfraRed) interferometer [Toon, 1991] between 1997 and 2005 (see Appendix in Brohede et al., 2008). The tropical and mid-latitudes profiles all compared very well, with the only significant discrepancies occurring for a couple of profiles near the polar night.

Figure S1: Time versus altitude (pressure) sections of monthly mean anomalies of NO₂ number density
 at 6:30 AM LST (unit: molecules cm⁻³) from (a) OSIRIS and (b) WACCM4 sampled like OSIRIS.
 Data are averaged between 5°S-5°N latitude.

Figure S2. a) Time-averaged vertical profiles of NO₂ number density from OSIRIS (o6:30 AM LST, green thick line) averaged between 5°S-5°N latitudes compared with corresponding WACCM results (gray thick line). Thin lines denote one-sigma standard deviation. b) Relative (percent, red solid line) and absolute (gray dashed line) differences between OSIRIS-WACCM4 vertical profiles.

Section S2 : Global QBO regression fits for satellite observations

We have analyzed global QBO regression fits for all of the species studied here, including O₃, N₂O, HNO₃ and NO_x. These fits are based on two orthogonal QBO basis functions (QBO1 and QBO2), as described in the main text, and results are shown for each species in Fig. S₃. All species show coherent QBO variations centered in the tropics, along with out-of-phase patterns in the extratropics. QBO1 and QBO2 patterns are spatially orthogonal, representing oscillating QBO variability. Spatial patterns in NO_x and HNO₃ in Fig. S₃ are in-phase with each other and out-of-phase with N₂O, and patterns in O₃ and NO_x are also out-of-phase with each other in the upper stratosphere, reflecting the QBO variations in chemical species discussed throughout this paper. Similar calculations for WACCM₄ reveal very similar spatial patterns and magnitudes in all cases and are not shown.

Figure S3. Latitude vs. altitude cross sections of relative amplitude of (a-d) QBO1 and (e-h) QBO2
 regression fits for MLS O3, OSIRIS NOx*, MLS N2O and HNO3. Contours show local percent
 variations in the respective species associated with one standard deviation of the QBO1 or
 QBO2 reference time series.