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Abstract. Thin cirrus clouds in the Tropical Tropopause
Layer (TTL) have important ramifications for radiative trans-
fer, stratospheric humidity, and vertical transport. A hor-
izontally extensive and vertically thin cirrus cloud in the
TTL was detected by the Cloud Aerosol LIDAR and Infrared
Pathfinder Satellite Observations (CALIPSO) on 27–29 Jan-
uary 2009 in the Tropical Eastern Pacific region, distant from
any regions of deep convection. These observations indi-
cate that the cloud is close to 3000 km in length along the
CALIPSO orbit track. Measurements over this three day pe-
riod indicate that the cloud event extended over a region from
approximately 15◦ S to 10◦ N and 90◦ W to 150◦ W and may
be one of the most extensive cirrus events ever observed. Co-
incident temperature observations from the Constellation of
Observing Satellites for Meteorology, Ionosphere, and Cli-
mate (COSMIC) suggest that the cloud formed in-situ as a
result of a cold anomaly arising from a midlatitude intru-
sion. The event appears to last for up to 2 days and the
temperature observations do not show any indication of the
expected infrared heating. It is hypothesized that the cloud
could be maintained by either nucleation of numerous small
ice crystals that don’t sediment or by multiple localized ice
nucleation events driven by temperature variability at scales
smaller than the overall cloud field, producing small ice-
crystal sizes which have sufficiently long residence times
(≈53 h) to maintain the cloud. It is possible that the residence
times are augmented by vertical motion which could also act
to offset the expected infrared heating. Further observations
of similar events will be required in order to conclusively ex-
plain this curious cloud.
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1 Introduction

Cirrus clouds have been predicted and observed in the Trop-
ical Tropopause Layer (TTL) for almost 30 yr (Robinson,
1980; Winker and Trepte, 1998; Fueglistaler, 2009). TTL cir-
rus are typically thin lamina, with low optical depths. These
thin, often subvisible clouds can have optical depths of less
than 0.03 (Sassen and Cho, 1992) and are the most common
form of cloud in the TTL (Wang and Dessler, 2006). Due to
their transient nature and complex morphology, the climate
impacts of TTL cirrus are poorly understood (Stubenrauch et
al., 2007). These clouds are also of interest because of their
influence on dehydration in the TTL and ultimately on strato-
spheric humidity (Gettelman et al., 2002; Jensen et al., 2001,
1996).

The formation of cirrus clouds in the TTL can be cate-
gorized into two different mechanisms: convection related
generation, and in-situ formation (Pfister et al., 2001). Deep
convective clouds with expanded anvil tops can have thin
cirrus clouds detrain into the TTL. In contrast, the forma-
tion of in-situ cirrus can occur away from convection when
a cold temperature anomaly causes the air to become satu-
rated (or supersaturated). The cold anomaly may be caused
by any number of mechanisms, such as gravity waves (Pfis-
ter et al., 2001), Kelvin waves (Boehm and Verlinde, 2000),
mid-latitude intrusions (Waugh and Polvani, 2000) and large
scale uplift (Corti et al., 2006). On average, over the equato-
rial region, sub-visible cirrus clouds occur 30 % of the time
(Mace et al., 2009). Over the Western Pacific, where TTL cir-
rus most frequently occur (Wang et al., 1996), Massie et al.
(2002) showed that half of the TTL cirrus are associated with
deep convection while the other half are formed in-situ. Re-
gardless of how TTL cirrus are formed, their vertical thick-
ness is typically less than 1 km and their horizontal scale is
commonly less than 100 km (Massie et al., 2010).
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Some TTL cirrus clouds have been seen with lifetimes as
long as a few days (Winker and Trepte, 1998). The mecha-
nism that is responsible for maintaining cirrus in the TTL for
such a long period of time is not well understood.Boehm
(1989) used a 2-D cloud resolving model to show that in-
ternal circulation is insufficient to maintain TTL cirrus and
concluded that externally forced large-scale uplift must be
required.Lilly (1988) used theoretical arguments to suggest
that local radiative heating can induce uplift that sufficiently
prevents the cloud-ice from sedimenting and consequently
maintains the cloud. More recently,Durran et al.(2009)
used a 2-D dynamical model to confirm Lilly’s hypothesis
and further suggest that adiabatic cooling assists in offsetting
the induced diabatic warming. The dynamical model used by
Durran et al.(2009) was extended byDinh et al.(2010) to in-
clude ice microphysics (deposition growth, sublimation, and
sedimentation). They showed that if TTL cirrus ice crystals
are relatively small (radii≤5 µm), then cloud radiative heat-
ing can generate a circulation with rising inside the cloud,
sinking outside the cloud, entrainment at cloud base, and de-
trainment at cloud top.Dinh et al.(2010) showed that this
circulation can provide a water supply for the cloud and sub-
stantially extend the cloud lifetime. It should be noted that
available observations suggest that TTL cirrus ice crystals are
considerably larger than 5 µm (Lawson et al., 2008; Davis et
al., 2010).

Radiative heating in TTL cirrus is a significant compo-
nent in the TTL thermal budget (Corti et al., 2006; Yang et
al., 2010). Radiative transfer calculations have shown that
in the absence of underlying anvil cirrus, the radiative heat-
ing in TTL cirrus (dominated by infrared radiation) is a few
K day−1 (Jensen et al., 1996; McFarquhar et al., 2000; Com-
stock et al., 2002). Direct observations of heating rates in
TTL cirrus at'13–15 km with optical depths ranging from
0.01–0.1 (mean of 0.034) indicated values of about 2.5–
3.2 K day−1, in good agreement with the calculated values
(Bucholtz et al., 2010). Hartmann et al.(2001) showed that
if thin TTL cirrus overlies optically thick anvil cirrus, the
thin cirrus will radiatively cool the TTL. However, compar-
ing satellite observations of isolated tropical cirrus with those
that have underlying thick clouds showed that there was not
a significant difference in optical depths of the cirrus (Riihi-
maki and McFarlane, 2010). Consistent with these observa-
tions,Yang et al.(2010) showed that the effects of solar heat-
ing are minimal on TTL cirrus and infrared heating is domi-
nant. The effects of radiation ultimately influence upwelling
and troposphere-to-stratosphere transport and, consequently,
stratospheric humidity (Corti et al., 2006).

Global climatologies of cirrus clouds developed from
satellite observations show that tropical (20◦ S–20◦ N) cir-
rus cloud fraction is predominantly over the continents and
Western Pacific (30%–40%) (Fu et al., 2007). Sassen et al.
(2009) used similar observations to show that tropical clouds
have an occurrence minimum over the Eastern Pacific in bo-
real winter. Satellite observations also show a large diurnal

signal in TTL cloud occurrence, but this has little effect upon
the low occurrence frequencies in the Eastern Pacific (Liu
and Zipser, 2009).

Here we provide a case study of a clearly isolated, ex-
tensive cirrus cloud found in the TTL over the Eastern Pa-
cific in a region devoid of deep convection in January 2009.
We use CALIPSO observations to characterize the spatial
and temporal extent of the cloud and its optical properties.
Coincident high vertical resolution temperature observations
from GPS radio occultation measurements are used to inves-
tigate the interaction between the cloud and background tem-
perature field. Finally, these observations are presented in
the context of the current theoretical understanding of cir-
rus physical properties and apparent inconsistencies are dis-
cussed.

2 Observations

Observations of cirrus clouds are provided by the Cloud-
Aerosol Lidar with Orthogonal Polarisation (CALIOP)
instrument on board the Cloud Aerosol Lidar and In-
frared Pathfinder Satellite Observations (CALIPSO) satellite.
These are combined with temperature observations made by
the Constellation of Observing Satellites for Meteorology,
Ionosphere, and Climate (COSMIC) satellite system. Coin-
cident observations made by these instruments elucidate de-
tails of cloud-temperature interaction in the TTL.

2.1 CALIPSO Data

The CALIPSO satellite mission was launched in April 2006
and is flying in formation with the A-train Constellation of
Satellites (Stephens et al., 2002). This constellation is in a
705 km sun-synchronous polar orbit inclined at 98.2◦ which
yields a 16 day repeat cycle (Winker et al., 2009). The
time of the observations is at 01:30 h and 13:30 h, local time.
The CALIOP instrument is a dual wavelength (532 nm and
1064 nm), polarization-sensitive LIDAR with a near-nadir
viewing geometry (Winker et al., 2007). Over the 8–20 km
altitude range, the charge-coupled device detector is config-
ured to observe a small footprint of≈1 km with a vertical res-
olution of≈60 m. For this study, the version 2.2 data product
horizontally averaged into 5 km footprints is used (referred
to as the 5km Cloud Layer product) (Vaughan et al., 2004).
In this product, the vertical cloud information is defined by
cloud layer tops and bottoms only. The layer integrated at-
tenuated backscatter is used to determine the optical depth of
a given layer. Similarly, the layer integrated depolarization
ratio is employed to determine the shape of the scattering
particles and, consequently, assist in discriminating between
phases in an observed cloud-layer. For example, a depolar-
ization ratio of≈0.4 is indicative of ice-phase clouds, such
as high-level cirrus clouds in the TTL (Hu, 2007).

Atmos. Chem. Phys., 11, 10085–10095, 2011 www.atmos-chem-phys.net/11/10085/2011/



J. R. Taylor et al.: Cirrus-Temperature Interactions in the TTL 10087

Fig. 1. Extensive cirrus cloud observed by CALIPSO on 28 January 2009 at approximately 10:00 UTC. The cloud extended from approxi-
mately (12◦ N, 123◦ W) to (15◦ S, 129◦ W). The image shows the CALIOP lidar vertical profile backscatter along the orbit track.

Cloud observations from CALIPSO have been used ex-
tensively to understand the climatology and statistics of
cirrus clouds in the TTL (Fu et al., 2007; Mace et al.,
2009). Furthermore, CALIPSO has been used in concert with
other satellite sensors to successfully investigate specific
case/process studies in the TTL (Takashima et al., 2010).
The 5km Cloud Layer product has been used to distinguish
between TTL cirrus clouds that are related to convection ver-
sus those that are isolated (Riihimaki and McFarlane, 2010).
Unfortunately, the limited spatial and temporal sampling of
CALIPSO have proven challenging for observing single cir-
rus clouds as consecutive daytime/nighttime passes are sepa-
rated by≈25◦ longitude at the equator with a time difference
of ≈1.6 hours between orbits (Virts et al., 2010). Despite
these limitations, CALIPSO cloud observations can be com-
bined with COSMIC temperature observations to provide se-
quential snapshots of cloud-temperature interactions.

2.2 COSMIC data

The COSMIC satellite system was launched in April 2006 as
a joint project with the Taiwanese Formosa Satellite Mission
3 (FORMOSAT-3). The system consists of six microsatel-
lites in a circular, 72◦ inclination orbit at 512 km altitude
(Anthes et al., 2008). Each satellite carries a Global Position-
ing System-Radio Occultation (GPS-RO) receiver that mea-
sures the phase delay of radio waves received from the con-
stellation of GPS satellites as they are occulted by the Earth’s
atmosphere. From this phase delay, high resolution vertical
profiles of precise bending angles are obtained (Kuo et al.,
2004). These bending angles are then converted to measure-
ments of temperature in the stratosphere and temperature and
water vapor in the troposphere (Kursinski et al., 1997). The
efficacy of this technique has previously been demonstrated
by the CHAllenging Minisatellite Payload (CHAMP) (Wick-
ert et al., 2001) and the Satellite de Aplicaciones Cientificas-
C (SAC-C) (Hajj et al., 2004).

COSMIC observations are distributed around the globe
with a temporal frequency as high as 2500 measurements/day
(Schreiner et al., 2007). Because the occultations are mea-
sured between the six microsatellites and the GPS constella-

tion, the temporal sampling does not follow a regular pattern
although the orbit results in a higher sampling at mid/high
latitudes. In this study, the Dry Profile observations (re-
ferred to as “dryPrf” product) are used and provide accu-
rate observations of temperature above 10 km (Wickert et al.,
2004). Although the profiles are provided on a 200 m grid,
the vertical temperature resolution is closer to 1 km (Bar-
nett et al., 2008). Comparisons between COSMIC and ra-
diosondes above 10 km have shown that the mean difference
in temperature observations is close-to-zero with virtually no
day/night bias (He et al., 2009).

3 Results

An isolated, horizontally extensive, and vertically thin cir-
rus cloud in the TTL was detected by CALIPSO on 27–29
January 2009 in the Tropical Eastern Pacific region. At it’s
most extensive, observations indicate that the cloud is close
to 3000 km in length along the CALIPSO orbit track, ex-
tending from approximately 15◦ S to 10◦ N (Fig. 1 shows the
532 nm lidar backscatter). Although the cloud vertical pro-
file varies from orbit to orbit, the cloud appears to only be
≈500-700 m thick, extending from≈15–15.7 km altitude in
Fig. 1. Detailed along-track measurements of this cloud at
15.4 km are shown in Fig.2. Across the entire cloud, the
integrated attenuated backscatter is nearly identical at both
wavelengths of the CALIOP LIDAR. This results in a color
ratio of close to unity, which is expected for cirrus clouds
composed of ice crystals much larger than the CALIOP ob-
servation wavelengths (Tao et al., 2008). Similarly, the depo-
larization ratio is almost constant at 0.4, indicating that the
cloud is comprised of ice-particles (Hu, 2007). Although the
optical depth varies across the cloud, it is primarily<0.1,
confirming that this is indeed a thin cirrus cloud. Figure2
does not show evidence of coherent small-scale spatial struc-
ture (e.g. wave-like activity) embedded throughout the entire
3000 km cirrus cloud.

The observations from CALIPSO (snapshots along the or-
bital tracks) were used to identify the space-time structure
of this extensive cirrus event. A compilation of observations
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Fig. 2. Variation of the cirrus cloud parameters retrieved from
CALIPSO at 15.5 km, for the cloud shown in Fig.1. The x-axis
represents the horizontal distance along the cloud from North to
South (scale: 1 unit = 5 km).

over this three day period suggests that the cloud covers ap-
proximately 90◦ W to 150◦ W and have no underlying clouds
in the 5–13 km range (see Fig.3). Because there are no other
observations of this area during this three day period, it is
impossible to determine whether the cloud extends between
all of the orbital tracks. As the observations appear to not
always be continuous along the tracks, it is likely that the
optical thickness of the cloud sufficiently decreases in some
regions, resulting in a “patchy” appearance. It is also pos-
sible that the cloud may migrate toward the west with time,
but this may merely be an artifact of the sparse sampling pro-
jected upon the evolution of the cloud.

The daily altitude distribution of the observations of
this cloud over 27–29 January 2009 are shown in Fig.4.
CALIPSO along-track (5 km) observations are counted
within 200 m vertical bins, with cloud counts in the Eastern
Pacific between 90◦ W to 150◦ W and 20◦ S to 15◦ N total-
ing 1013, 1571, and 548 on 27, 28, and 29 January 2009,
respectively (i.e. the occurrences seen in Fig4). The ap-
proximate peak altitudes of the normalized distributions are
at 15.2 km, 15.4 km, and 16.0 km on 27, 28, and 29 January,
respectively. It is of interest to note that these are well below

Fig. 3. The horizontal extent of the isolated TTL cirrus cloud
over 27–29 January 2009. Colors indicate the presence of a cir-
rus cloud over altitudes 13–18 km, with no clouds from 5–13 km.
Blue, green,and red symbols represent observations on the 27, 28,
and 29 January, respectively. The cloud shown in Figs.1 and2 can
be seen in the middle of the region (long, continuous, green track),
extending continuously from≈15◦ S to≈10◦ N

the cold point tropopause (17.2 km). Due to the considerable
orbit to orbit variability in cloud altitude, the approximate
full-width and half-maximum (FWHM) of the observed al-
titude distributions are 1.7 km, 1.7 km, and 1.1 km on these
respective days. The vertical shift in these daily distributions
could suggest that the cloud is slowly moving upward over
its lifetime. However, an alternative explanation is that the
lower portion of the cloud is slowly sedimenting over the
course of the three day period, resulting in an apparent verti-
cal shift and the altitude distribution becoming narrower.

To assist in understanding the evolution of this tropical cir-
rus cloud, coincident observations from COSMIC were used
to monitor the background temperature conditions. Coinci-
dences were defined as occurring on the same day within the
same region of the Eastern Pacific: 90◦ W to 150◦ W and
20◦ S to 15◦ N (see Fig.5). Due to the orbital geometry and
configuration of the radio occultation measurements, COS-
MIC has an irregular sampling pattern that makes temporal
coincidence definition difficult. As such, all temperature ob-
servations within the region on a given day were included
(there are typically 50 observations day−1).
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Fig. 4. Normalized distribution of cloud altitudes detected by
CALIPSO in the Eastern Pacific on 27–29 January 2009. The distri-
bution is determined from the CALIPSO 5 km Cloud Layer product
(v2.2). Between the cloud base and cloud top, a cloud is counted
every 200 m for each day of observations within the cloud outline
from Fig.3. For comparison, the peak count is normalized to 1 for
each day.

A height-time section of daily temperature anomalies ob-
served within this region is shown in Fig.6. Anomalies
were determined by subtracting the monthly mean temper-
ature profile within this region and then calculating the daily
mean difference. Figure6 shows a cold anomaly of approx-
imately 2–3 K occurs from 25–31 January 2009, spanning
altitudes 15–18 km, roughly coincident with the cloud occur-
rence. The average temperature in this region, over this time
period, is approximately 191 K. The 3 day duration of the
observed cirrus cloud lies in the middle for this 6 day cold
anomaly and is consistent with the timing of the coldest tem-
peratures. It is of interest to note that the cloud appears at 15–
15.5 km altitude, while anomalies at the cold point (≈17 km)
are 2 K colder than at this altitude. It is also interesting to
note that the temperatures directly below the cloud (14 km
and lower) are anomalously warm and are likely tied to the
dynamical structure of the event (as discussed below).

The longitudinal distribution of daily-mean temperature
anomalies on 28 January (see Fig.7) confirms the localized
nature of this anomaly. The cold anomaly is restricted to

Fig. 5. COSMIC observations coincident with the area of the cirrus
cloud on 28 January 2010

the Eastern Pacific region with a persistent warm anomaly
present directly below. This vertical temperature struc-
ture can arise from balanced flow about an isolated (anti-
cyclonic) potential vorticity anomaly (Hoskins et al., 1985).
The horizontal structure of temperature anomalies at 16 km
over 27–29 January is shown in Fig.8. This structure high-
lights that the cold temperature anomalies in the Eastern
Pacific (90◦ W to 130◦ W are linked with patterns in the
subtropics; note the minimum near 15◦ S). This behaviour
is distinct from equatorially-centered temperature anoma-
lies linked to equatorially-trapped waves, such as the Kelvin
wave pattern seen over longitudes≈ 0◦–120◦ E in Figs.7–
8 (Randel and Wu, 2005, e.g.). The overall latitudinal and
vertical structure of the Eastern Pacific temperature anomaly
is more consistent with dynamical features originating in ex-
tratropics, extending into tropical latitudes, such as are often
observed in the Eastern Pacific (Waugh and Polvani, 2000).
The dynamical behavior during January 2009 is illustrated
via the potential vorticity (PV) maps for the upper tropo-
sphere (200 hPa) derived from NCEP reanalysis shown in
Fig. 9, for time periods prior to (10–23 January) and dur-
ing (27–29 January) the cloud event. The period of 10–23
January was characterized by persistent cyclonic PV patterns
extending into the tropics in the Eastern Pacific from both
the Northern Hemisphere (NH) and Southern Hemisphere
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Fig. 6. Timeseries of daily mean temperature anomalies observed
by COSMIC within the area of coincidence. Anomalies are derived
by subtracting the monthly mean temperature within the area.
Average cold point temperatures over this period are below 190 K.

(SH) that are associated with an equatorially-centered west-
erly wind maximum in this region. This structure changed
over a few days during 24–28 January, wherein the SH intru-
sion moved westward and extended across the equator into
the NH, and the NH intrusion extended into the SH. In the
Eastern Pacific region of the cirrus cloud (boxed region in
Fig. 9), the resulting PV anomalies for 27–29 January were
anti-cyclonic compared to the persistent pattern earlier in the
month, consistent with the balanced temperature structure of
warm anomalies in the troposphere and cold anomalies in
the lower stratosphere (seen in Fig.7). Hence the cold tem-
peratures and cloud formation occurred in concert with the
dynamical evolution seen in Fig.9.

The circulation in the region of the cloud was studied
based on NCEP reanalysis winds. The evolution of 150 hPa
winds (the approximate pressure level of the cloud) during
the six day cold period indicate that this region was relatively
stagnant at this time. Calculated trajectories of air parcels
within the cloud observed on 28 January 2009 (see Fig.1)
were seen to only move≈200 km over 2 days. The only
fresh air that comes into this region is at the extreme south-

Fig. 7. Temperature anomalies as a function of longitude on 28 Jan-
uary 2010 over 15◦ N–15◦ S. Anomalies are derived by subtracting
the monthly mean temperature over the same latitude band.

ern end of the cloud; south of≈17◦ S. In Fig.1, this portion
of the cloud is somewhat different from the rest of the cloud,
possibly due to the in-mixing of fresh air.

4 Discussion

We hypothesize that the cirrus cloud formed in situ when the
circulation change seen in Fig.9 resulted in a relative cold
anomaly in the Eastern Pacific TTL. The decrease in tem-
perature caused the air in this region to become supersatu-
rated and the cirrus cloud formed. This is consistent with the
coldest temperatures, and longest anomaly, occurring coinci-
dent with the cloud (Fig.6). It is of interest to note that the
cloud does not form in the coldest part of the TTL (the cold
point, near 17 km) but approximately 1–2 km below this area,
which is consistent with the statistical behavior of clouds in
this region (Fueglistaler, 2009). The lower altitude of the
cloud is consistent with the COSMIC temperature anomalies
(Figs. 6–7), while the mechanism limiting the cloud thick-
ness is uncertain (although likely linked to the vertical struc-
ture of water vapour in this region). The apparent vertical
motion suggested in Fig.4 may simply be an artifact caused
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Fig. 8. Temperature anomalies on 27–29 January 2010 on the 16 km
altitude surface. Anomalies are derived by subtracting the monthly
mean temperature.

by sedimentation/sublimation at lower altitudes and higher
altitude variations near the 0.003 optical depth sensitivity
threshold of CALIPSO. Perhaps most surprising is the lack of
observed temperature perturbation associated with the cloud
(i.e. a lack of warming in the cloud layer). The anticipated
heating rates of 2–3 K day−1 (Hartmann et al., 2001) produce
no observable signature in the COSMIC temperature time-
series, vertical structure, or horizontal field, although close
coincidences in space and time are limited by the CALIPSO
and COSMIC observations.

To the best of the authors’ knowledge, a cirrus cloud of this
extent and duration has never been observed before. Previous
observations have found thin tropical cirrus clouds with an
extent as large as 1000 km (Winker and Trepte, 1998) and an
area as large as 100 000 km2 (Peter et al., 2003), but nothing
near as large as the cloud investigated here. Cirrus clouds in
the TTL have estimated average lifetimes of≈12 h (Jensen et
al., 2011) and, even the most exceptional cases, only last up
to 40 h (Luo and Rossow, 2004). The primary limitations on
cloud lifetime are TTL temperature variability and the rate of
ice crystal sedimentation into subsaturated air.
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Fig. 9. 200 hPa potential vorticity anomaly maps derived from
NCEP reanalysis for time periods prior to (10–23 January) and dur-
ing (27–29 January) the cloud event. The box highlights the region
of the observed cloud and the vectors represent the associated wind
field.

There are two hypotheses that can potentially explain the
long lifetime of this cloud: (1) the cooling associated with the
dynamical evolution could result in the formation of small ice
crystals with exceptionally low fall speeds, or (2) the cloud
region is in a state of dynamic flux in which there is con-
tinuous or sporadic generation of new ice crystals that sub-
sequently grow and sediment through the cold layer. The
first hypothesis can be investigated by estimating ice crys-
tal radius based on the assumption of a monodispersed size
distribution that is uniform throughout the cloud depth:

r =

√
τ

No1zQeπ
, (1)

wherer is the ice crystal effective radius,τ is the cloud opti-
cal depth,No is the number concentration,Qe is the extinc-
tion efficiency, and1z is the vertical cloud thickness (Com-
stock et al., 2002). For the small crystals likely to exist in
optically thin cirrus, sedimentation speed can be calculated
from the Stokes equation (Pruppacher and Klett, 1997). As-
suming an average optical depth of 0.1 and a constant extinc-
tion efficiency of 2, the average ice crystal radii, fall speeds,
and estimated fall times for various number concentrations
are shown in Tables1 and2. For conditions with high num-
ber concentration and small effective radii, ice crystals have
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Table 1. Estimates of effective ice crystal radius (r), subsequent
fall speeds (vo), and the time required to fall through the thickness
of the cloudt1z. Calculations are made for three different number
concentrations (No) and assume a cloud thickness (1z) of 700 m.

No [number cm−3] r [µm] vo [cm s−1] t1z [hours]

0.1 15 3.5 5.6
0.4 7.5 0.92 21
1.0 4.7 0.37 53

a residence time as large as 53 h for a 700 m thick cloud and
27 h for a 500 m thick cloud. The temperature anomalies
shown in Fig.6suggests that the onset of cooling was rapid in
this region. Such high ice concentrations could be produced
by homogeneous freezing of aqueous sulfate aerosols if the
cooling is sufficiently rapid (Karcher and Lohmann, 2002).
Based on the vertical thickness of the cloud shown in Fig.1,
it is plausible that the ice crystals are sufficiently small to re-
sult in residence times of over 2 days. This is consistent with
the gravity-wave-driven ascent hypothesis for cloud mainte-
nance proposed byDinh et al.(2010) but it is unlikely that
these ice crystals are as small as those used in their model.
Given the limitations of the observations, it is challenging
to quantitatively address the second hypothesis; in all likeli-
hood, there is some degree of dynamic flux achieved over a
portion of this region.

Alternative hypotheses require some form of sustained
vertical motion to maintain the cloud at this altitude. Re-
cent results from a three dimensional cloud-resolving model
show that low thermal stability (N2 < 0.009) allows the ra-
diative heating to induce sufficient small-scale convection to
maintain the cloud at a persistent high altitude (Jensen et al.,
2011). Although conditions of low thermal stability do oc-
cur in the TTL, it is near-impossible to have uniformly low
stability throughout this entire region of the Eastern Pacific.
Results from a column model used to simulate conditions for
extensive clouds observed in the Indian Ocean showed that
an upwelling of≈5 mm s−1 below the tropopause is required
to sustain the cloud (Luo et al., 2003). The apparent two-day
shift in peak altitude from Fig.4 is ≈4.6 mm s−1. It is chal-
lenging to interpret this shift as apparent upward motion of
the cloud because the altitude distribution varies from orbit to
orbit and, even for small ice crystals (a few microns), the sed-
imentation speed is comparable to updraft speeds. While this
value is consistent with the proposed mechanism for cloud
maintenance, it is unlikely that upwelling would occur in this
region. The downward portion of the Walker Cell dominates
the large-scale circulation over the Eastern Pacific and clear
sky radiative heating calculations suggest near-zero vertical
motion near 15 km (Yang et al., 2010, e.g.,).

While the first hypothesis of small ice-crystals having a
long residence time may explain the long duration of the
cloud, it does not address the lack of temperature perturba-

Table 2. Same as Table1 but for a cloud thickness (1z) of 500 m.

No [number cm−3] r [µm] vo [cm s1] t1z [hours]

0.1 17 4.5 3.1
0.4 8.9 1.3 11
1.0 5.6 0.52 27

tion that would be expected from longwave heating. There
has been a previous attempt to model fixed heating with
no resulting temperature perturbation (Bretherton and Smo-
larkiewicz, 1989), but this yielded extensive buoyancy dis-
placements and no such signatures are apparent in the COS-
MIC temperature field. As the trajectory analysis indicates
that the horizontal winds are nearly stagnant over this re-
gion, there is no obvious source of fresh moisture to stimulate
the growth of new ice crystals. Therefore, some mechanism
must be responsible for inhibiting sedimentation into subsat-
urated air below. If the apparent vertical shift in the cloud is
due to sustained upwelling, this would not only inhibit sedi-
mentation, it would mean that the cloud would move through
a background average temperature of≈200 K at 15 km to
≈195 K at 16 km. This change of 5 K could be central to
masking a longwave heating signal.

While there are a number of caveats associated with this
speculation (the limited sensitivity of CALIPSO, the impre-
cision of the altitude distributions, the notion of large-scale
sustained upwelling in the TTL over the Eastern Pacific), this
hypothesis does provide a plausible explanation for the 2–3
day lifetime of the cloud and the lack of response in the tem-
perature field.

5 Conclusions

Variations in the large-scale circulation linked with tropical
intrusions generated an anomalously cold region in the trop-
ical tropopause layer over the Eastern Pacific on 26–31 Jan-
uary 2009. In this region, which is characterized by a lack
of deep convection, one of the largest, most extensive cir-
rus clouds ever observed persisted from 27–29 January 2009.
This cirrus occurred in a thin layer of order 1 km thick in
the area covering 90◦ W to 150◦ W and 20◦ S to 15◦ N over
an altitude of≈15–15.5 km. The CALIOP LIDAR on board
the CALIPSO satellite indicated that the cirrus cloud is com-
posed of ice-particles and varied in optical depth between
≈0.003 and≈0.21. Over the two-three day lifetime of the
cloud, the altitude distribution changes and the peak altitude
appears to ascend from 15.2 km to 16.0 km. Although iso-
lated TTL cirrus typically have calculated heating rates close
to 3 K day−1, coincident observations made by the COSMIC
satellite system do not reveal any associated warming in the
temperature field.
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The lifetime of TTL cirrus clouds is typically≈12 h and
is limited by ice-crystal growth and sedimentation into sub-
saturated air below the cloud layer. The cloud described here
persists in the TTL for≈2 days with no sign of sedimenta-
tion or descent. The mechanism responsible for maintaining
the cloud over this large area for so long is not well un-
derstood. A previously proposed mechanism for maintain-
ing long-lived cirrus relies on sustained vertical upwelling
of ≈5 mm s−1, a value that is consistent with the observed
change in altitude distributions. Furthermore, the change in
altitude coincides with a background temperature change of
≈5 K, which could mask the temperature perturbation that
would be expected from cloud-induced heating. Although
this provides a consistent explanation of the observations, it
is unlikely to be realistic as the calculated clear-sky vertical
velocity around 15 km is near zero.

This case study provides an important test of microphysics
models and our understanding of cirrus cloud physics. Un-
fortunately, precise measurements of vertical upwelling are
not available for correlative comparison. Without access to
more details, these curious observations await further inves-
tigation.
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